Forecasting of Engine Performance for Gasoline-Ethanol Blends using Machine Learning
DOI:
https://doi.org/10.5614/j.eng.technol.sci.2023.55.3.10Keywords:
E0, E10, engine performance, ethanol, machine learningAbstract
The incorporation of alternative fuels in the automotive domain has brought a new paradigm to tackle the environmental and energy crises. Therefore, it is of interest to test and forecast engine performance with blended fuels. This paper presents an experimental study on gasoline-ethanol blends to test and forecast engine behavior due to changes in the fuel. This study employed a machine learning (ML) technique called TOPSIS to forecast the performance of a slightly higher blend fuelled engine based on experimental data obtained from the same engine running on 0% ethanol blend (E0) and E10 fuels under full load conditions. The engine performance predictions of this ML model were validated for 15% ethanol blend (E15) and further used to predict the engine performance of 20% ethanol blend fuel. The prediction R2 score for the ML model was found to be greater than 0.95 and the MAPE range was 1% to 5% for all observed engine performance attributes. Thus, this paper presents the potential of TOPSIS methodology-based ML predictions on blended fuel engine performance to shorten the testing efforts of blended fuel engines. This methodology may help to faster incorporate higher blended fuels in the automotive sector.
Downloads
References
Nguyen, H., Phan, T., Ta, P., Nguyen, C., Pham, N. & Huynh, H., Gene Family Abundance Visualization based on Feature Selection Combined Deep Learning to Improve Disease Diagnosis, Journal of Engineering and Technological Sciences, 53 (1), 210109, Jan. 2021. doi: 10.5614/j.eng.technol.sci.2021.53.1.9.
Abdul A.F., Alsaeed M., Sulaiman, S. Mohd A., Mohd K.A. & Al-Hakim, M., Mixed Reality Improves Education and Training in Assembly Processes, Journal of Engineering and Technological Sciences, 52 (4), pp. 598, Jul. 2020. doi: 10.5614/j.eng.technol.sci.2020.52.4.10.
Zhou, L., Song, Y., Ji, W. & Wei, H., Machine Learning for Combustion, Energy and AI, 7, pp. 100128, Nov. 2021. doi: 10.1016/j.egyai.2021.100128.
Uslu, S. & Celik, M., Prediction of Engine Emissions and Performance with Artificial Neural Networks in a Single Cylinder Diesel Engine using Diethyl Ether, Engineering Science and Technology- An International Journal, 21, Sep. 2018. doi: 10.1016/j.jestch.2018.08.017.
Sekhar, R., Shah, P., Solke, N. & Singh, T., Machine Learning-Based Predictive Modeling and Control of Lean Manufacturing in Automotive Parts Manufacturing Industry, Global Journal of Flexible Systems Management, 23(1), Oct. 2021. doi:.1007/s40171-021-00291-9.
Jatti, V., Sekhar, R. & Shah, P., Machine Learning Based Predictive Modeling of Ball Nose End Milling using Exogeneous Autoregressive Moving Average Approach, IEEE 12th International Conference on Mechanical and Intelligent Manufacturing Technologies, pp. 68-72, May 2021. doi: 1109/ICMIMT52186.2021.9476067.
Afzal, A., Aabid, A., Khan, A., Khan, S., Rajak, U., Verma, T. & Kumar, R., Response Surface Analysis, Clustering, and Random Forest Regression of Pressure in suddenly Expanded High-Speed Aerodynamic Flows, Aerospace Science and Technology, 107, Oct. 2020. doi: 10.1016/j.ast.2020.106318.
Mokashi, I., Afzal, A., Khan, S., Abdullah, N., Azami, M., Jilte, R. & Samuel, O., Nusselt Number Analysis from a Battery Pack Cooled by Different Fluids and Multiple Back-propagation Modelling using Feed-Forward Networks. International Journal of Thermal Sciences, 161(23), Nov. 2020. doi: 10.1016/j.ijthermalsci.2020.106738.
Kodancha, P., Pai, A., Kini, C. & Bayar, R., Performance Evaluation of Homogeneous Charge Compression Ignition Combustion Engine ? A Review, Journal of Engineering and Technological Sciences, 52(3), pp. 289-309, May 2020. doi: 10.5614/j.eng.technol.sci.2020.52.3.1.
Singh, G., Dogra, D., Ramana, R., Chawla, J., Sutar, P.S., Sagare, V.S., Sonawane, S.B., Kavathekar, K., Rairikar, S. & Thipse, S.S., Development of Dual Fuel (Diesel + CNG) Engine for Off-Road Application, SAE Technical Paper 2021-26-0119, Sep. 2021. doi: 10.4271/2021-26-0119.
Bawase, M.A. & Thipse, D.S.S., Impact of 20% Ethanol-blended Gasoline (E20) on Metals and Non-metals used in Fuel-system Components of Vehicles, ARAI Journal of Mobility Technology, 1(1), pp 1-8, Dec. 2021. doi: 10.37285/ajmt.1.0.1.
Kavathekar, K., Thipse, S., Rairikar, S., Sonawane, S., Sutar, P. & Bandyopadhyay, D., Study of Effect on Engine Performance Using 15% HCNG Blend Versus CNG Using a Simulation Approach, Advances in Mechanical Engineering, eds. Kalamkar, V. & Monkova, K. (Springer), Jan. 2021. doi: 1007/978-981-15-3639-7.
Bandyopadhyay, D., Sutar, P., Sonawane, S. & Rairikar, S., Experimental Analysis of Heavy Duty CNG Engine Based on Its Aspiration and Fuel System, SAE Technical Paper, pp. 2021?2047, Sep. 2021. doi: 10.4271/2021-26-0117.
Yesilyurt, M., Uslu, S., & Yaman, H., Modeling of a Port Fuel Injection Spark-Ignition Engine with Different Compression Ratios Using Methanol Blends with the Response Surface Methodology, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Jul. 2022. doi: 10.1177/09544089221112373.
Badra, J., Khaled, F., Sim, J. & Pei, Y., Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning, SAE Technical Paper 2020-01-1313, Apr. 2020. doi: 10. 4271/2020-01-1313.
Gonzez, S., Kroyan, Y., Sarjovaara, T., Kiiski, U., Karvo, A., Toldy, A., Larmi, M., & Santasalo-Aarnio, A., Prediction of Gasoline Blend Ignition Characteristics Using Machine Learning Models, Energy & Fuels, 35 (11), pp. 9332?9340, May 2021. doi: 10.1021/acs.energyfuels.1c00749.
Airamadan, A., Ibrahim, Z., Mohan, B., & Badra, J., Machine Learning Model for Spark-Assisted Gasoline Compression Ignition Engine, SAE International Journal of Advances and Current Practices in Mobility, 5 (2), Mar. 2022. doi: 10.4271/2022-01-0459.
Shah, N., Zhao, P., Delvescovo, D. & Ge, H., Prediction of Autoignition and Flame Properties for Multicomponent Fuels Using Machine Learning Techniques, SAE Technical Paper, pp. 2019?2020, Mar. 2019. doi: 10.4271/2019-01-1049.
Petrucci, L., Ricci, F., Mariani, F. & Cruccolini, V., Engine Knock Evaluation Using a Machine Learning Approach, SAE Conference on Sustainable Mobility, SAE Technical Paper 2020-24-0005, Sep. 2020. doi: 10.4271/2020-24-0005
Chandrasekar, K., Sudhakar, S., Rajappan, R., Senthil, S. & Balu, P., Present Developments and the Reach of Alternative Fuel: A review, Materials Today Proceedings, 51(3), May 2021. doi: 10.1016/j.matpr.2021.04.505.
Bielaczyc, P., Woodburn, J., Klimkiewicz, D., Pajdowski, P., & Szczotka, A., An examination of the effect of ethanol?gasoline blends' physicochemical properties on emissions from a light-duty spark ignition engine, Fuel Processing Technology, 107(5813), pp. 50?63, 2013. doi: 10.1016/j.fuproc.2012.07.030.
Mohamad, B., Szepesi, G.L., & Bollo, B., Review Article: Effect of Ethanol-Gasoline Fuel Blends on the Exhaust Emissions and Characteristics of SI Engines, Vehicle and Automotive Engineering, 2, VAE 2018, May 2018, Lecture Notes in Mechanical Engineering. Springer, Cham. doi: 10.1007/978-3-319-75677-6_3.
He, Z. & Zhou, W., Generation of synthetic full-scale burst test data for corroded pipelines using the tabular generative adversarial network, Engineering Applications of Artificial Intelligence, 115(7), Oct. 2022. doi: 105308. 10.1016/j.engappai.2022.105308.
Badra J., Owoyele O., Pal P., & Sibendu S., A machine learning-genetic algorithm approach for rapid optimization of internal combustion engines, Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines, ed.1, Elsevier, pp. 125-158, Jan. 2022. doi: 10.1016/B978-0-323-88457-0.00003-5.
Mariani, V., & Och, S., & Coelho, L., & Domingues, E., Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models, Applied Energy, pp. 249:204-221, Sep. 2019. doi: 10.1016/j.apenergy.2019.04.126.
Togun, N., & Baysec, S., Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Applied Energy, 87(1), pp. 349-355, Jan. 2020. doi: 10.1016/j.apenergy.2009.08.016.
Najafi, G., Ghobadian, B., Tavakoli, T., Buttsworth, D., Yusaf, T.F., & Faizollahnejad, M., Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network, Applied Energy, 86(5), pp. 630-639, May 2009. doi: 10.1016/j.apenergy.2008.09.017.
Baddu, N., Khalid, A., Samsudin, D., Zaman, I., & Manshoor, B., Investigation of Flame Characteristics of Ethanol-Gasoline Blends Combustion Using Constant Volume Chamber, MATEC Web of Conferences, 78, 01030, Jan. 2016. doi: 10.1051/matecconf/20167801030.
Eyidogan, M., Ozsezen, A. N., Canakci, M. & Turkcan, A., Impact of alcohol-gasoline fuel blends on the performance and combustion characteristics of an SI engine, Fuel, 89 (10), pp. 2713?2720, Oct. 2010. doi: 10.1016/j.fuel.2010.01.032.
Sakthivel, G., Ilangkumaran, M., & Gaikwad, A., A Hybrid Multi-Criteria Decision Modelling Approach for The Best Biodiesel Blend Selection Based On ANP-TOPSIS Analysis, Ain Shams Engineering Journal, 6(1), pp. 239?256, Sep. 2014. doi: 10.1016/j.asej.2014.08.003.
Khoshkangini, R., Mashhadi, P., Tegnered, D., Lundstrom, J., & Rognvaldsson, T., Predicting Vehicle Behavior Using Multi-Task Ensemble Learning, Expert Systems with Applications, 212(6), Sep. 2022. doi: 10.1016/j.eswa.2022.118716.
Sebayang, A., Masjuki, H., Ong, H. C., Dharma, S., Silitonga, A., & Kusumo, F., Prediction of Engine Performance and Emissions with Manihot Glaziovii Bioethanol- Gasoline Blended Using Extreme Learning Machine, Fuel, 210 (7), pp. 914?921, Sep. 2017. doi: 10.1016/j.fuel.2017.08.102.
Shin, S., Lee, Y., Kim, M., Park, J., Lee, S., & Min, K., Deep neural network model with Bayesian hyperparameter optimization for prediction of NOx at transient conditions in a diesel engine. Engineering Applications of Artificial Intelligence, 94 (Feb), Sep. 2020. doi: 103761. 10.1016/j.engappai.2020.103761.
Elumalai, P. V., Krishna M., R., Parthasarathy, M., Samuel, O. D., Owamah, H. I. & Saleel, C. A., Artificial Neural Networks Model for Predicting the Behavior of Different Injection Pressure Characteristics Powered by Blend of Biofuel-Nano Emulsion, Energy Science & Engineering, 10 (7), pp. 2367?2396, Apr. 2022. doi: 10.1002/ese3.1144.
Yang, R., Yan, Y., Sijia, R. & Liu, Z., Modeling Performance and Emissions of a Spark Ignition Engine with Machine Learning Approaches, SAE International Journal of Advances and Current Practices in Mobility, SAE Technical Paper 2022-01-0380, 5(2), Mar. 2022. doi: 10.4271/ 2022-01-0380.
 
						












