Advancements, Challenges, and Future Directions in Rainfall-Induced Landslide Prediction: A Comprehensive Review
DOI:
https://doi.org/10.5614/j.eng.technol.sci.2023.55.4.9Keywords:
climate change, empirical method, landslide monitoring, machine-learning method, physical-based method, rainfall-induced landslidesAbstract
Rainfall-induced landslides threaten lives and properties globally. To address this, researchers have developed various methods and models that forecast the likelihood and behavior of rainfall-induced landslides. These methodologies and models can be broadly classified into three categories: empirical, physical-based, and machine-learning approaches. However, these methods have limitations in terms of data availability, accuracy, and applicability. This paper reviews the current state-of-the-art of rainfall-induced landslide prediction methods, focusing on the methods, models, and challenges involved. The novelty of this study lies in its comprehensive analysis of existing prediction techniques and the identification of their limitations. By synthesizing a vast body of research, it highlights emerging trends and advancements, providing a holistic perspective on the subject matter. The analysis points out that future research opportunities lie in interdisciplinary collaborations, advanced data integration, remote sensing, climate change impact analysis, numerical modeling, real-time monitoring, and machine learning improvements. In conclusion, the prediction of rainfall-induced landslides is a complex and multifaceted challenge, and no single approach is universally superior. Integrating different methods and leveraging emerging technologies offer the best way forward for improving accuracy and reliability in landslide prediction, ultimately enhancing our ability to manage and mitigate this geohazard.
Downloads
References
An, H., Kim, M., Lee, G. & Tran, T.V., Survey of Spatial and Temporal Landslide Prediction Methods and Techniques, Korean Journal of Agricultural Science, 43(4), pp. 507-521, Dec. 2016.
Tran, T.V., Alvioli, M. & Hung, H.V., Description of a Complex, Rainfall-Induced Landslide within a Multi-Stage Three-Dimensional Model, Nat Hazards, 110, pp. 1953-1968, Sep. 2021.
Tran, T.V., Alvioli, M., Lee, G.H. & An, H., Three-Dimensional, Time-Dependent Modeling of Rainfall-Induced Landslides over a Digital Landscape: A Case Study, Landslides, 15, pp. 1071-1084, Dec. 2017.
Krisnanto, S., Rahardjo, H. Kartiko, R.D., Alfrendo, S., Joko, N., Netto, M., Pudjo, S., Achmad, H., Didit, B.P, & Saraswati, N.R., Characteristics Of Rainfall-Induced Slope Instability In Cisokan Region, Indonesia, J. Eng. Technol. Sci., 53(5), pp. 861-882, Oct. 2021.
Tohari, A., Study of Rainfall-Induced Landslide: A Review, IOP Conference Series: Earth and Environmental Science, 118, pp. 1-7, Feb. 2018.
Tran, T.V., Dinand, A. & Robert, H., Weathering and Deterioration of Geotechnical properties in Time of Groundmasses in a Tropical Climate, Engineering Geology, 260(3), 105221, Otc. 2019.
Tran, T.V., Pham, H.D, Hoang, V.H. & Trinh, M.T., Assessment of the Influence of the Type of Soil and Rainfall on the Stability of Unsaturated Cut-Slopes ? A Case Study, International Journal of GEOMATE, 20(77), pp. 141-148, Jan. 2020.
Brand, E.W., Premchitt, J. & Phillipson, H.B., Relationship between Rainfall and Landslides in Hong Kong, Proceedings of The 4th International Symposium on Landslides, Toronto, Canada, pp. 276-284, 1984.
Petley, D., On the Impact of Climate Change and Population Growth on the Occurrence of Fatal Landslides in South, East And SE Asia, Quarterly Journal of Engineering Geology and Hydrogeology, 43(4), pp. 487-496, Nov. 2010.
Tran, T.V., Thu, T.M, Lee, G.H, Oh, S & Van, N.T.H., Effect of Extreme Rainfall on Cut Slope Stability: Case Study in Yen Bai City, Viet Nam, Journal of the Korean Geo-Environmental Society, 16(4), pp. 23-32, Mar. 2015.
Alvioli, M. & Baum., R.L., Parallelization of the TRIGRS Model for Rainfall-Induced Landslides Using the Message Passing Interface, Environ. Model. Soft., 81, pp. 122-135, Jul. 2016.
Kuradusenge, M., Kumaran, S. & Zennaro, M., Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda, Int. J. Environ. Res. Public Health, 17(11), pp. 1-20, Jun. 2020.
Reichenbach, P., Rossi, M., Malamud, B.D, Mihir, M. & Guzzetti, F., A Review of Statistically-Based Landslide Susceptibility Models, Earth-Science Rev, 180, pp. 60-91, May. 2018.
Nguyen, T.K., Tran, T.V., Lien, V.T.H., Linh, P.L.H. & Nguyen, Q.T., Landslide Susceptibility Mapping Based on the Combination of Bivariate Statistics and Modified Analytic Hierarchy Process Methods: A Case Study of Tinh Tuc Town, Nguyen Binh District, Cao Bang Province, Vietnam, Journal of Disaster Research, 16(4), pp. 521-528, Jan. 2021.
Shan, Y., Chen, S., Zhong, Q., Mei, S. & Yang, M., Development of an Empirical Model for Predicting Peak Breach Flow of Landslide Dams Considering Material Composition, Landslides, 19, pp. 1491?1518, Mar. 2022.
Guzzetti, F., Peruccacci, S., Rossi, M & Stark, C.P., The Rainfall Intensity?Duration Control of Shallow Landslides and Debris Flows: An Update, Landslides, 5, pp. 7-13, Feb. 2008.
An, H., Viet, T.T., Lee, G.H., Kim, Y., Kim, M., Noh, S. & Noh, J., Development of Time-Variant Landslide-Prediction Software Considering Three-Dimensional Subsurface Unsaturated Flow, Environmental Modelling & Software., 85, pp. 172-183, Nov. 2016.
Baum, B.L., Savage, W.Z. & Godt, J.W., TRIGRS ? A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0, U.S. Geological Survey: Denver, USA, pp. 1-75, 2008.
Kainthura, P. & Sharma, N., Hybrid Machine Learning Approach for Landslide Prediction, Uttarakhand, India., Scientific Reports, 12(20101), pp. 1-23, Nov. 2022.
Sarker, I.H., Machine Learning: Algorithms, Real-World Applications and Research Directions, SN Computer Science, 2(160), pp. 1-21, Mar. 2021.
Tehrani, F.S., Calvello, M., Liu, Z., Zhang, L. & Lacasse, S., Machine Learning and Landslide Studies: Recent Advances And Applications, Nat Hazards, 114, pp. 1197-1245, Jun. 2022.
Ma, Z., Mei, G. & Piccialli, F., Machine Learning for Landslides Prevention: A Survey, Neural Computing and Applications, 33, pp. 10881-10907, Sep. 2021.
Merghadi, A., Yunus, A.P., Dou, J., Whiteley, J., Pham, T.B., Bui, T.D., Avtar, R. & Abderrahmane, B., Machine Learning Methods For Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance, Earth-Science Reviews, 207(103225), Aug. 2020.
Nguyen, V.T., Wakai, A., Go, S., Tran, T.V. & Kitamura, N., Simple Method for Shallow Landslide Prediction Based on Wide-Area Terrain Analysis Incorporated With Surface and Subsurface Flows, Nat. Hazards Review, 23(4), pp. 1-17, Aug. 2022.
Kadamb, R.R. & Savoikar. P.P., Rainfall Induced Landslides ? A Review, in Recent Developments in Sustainable Infrastructure (ICRDSI-2020), Singapore: Springer, 207, pp. 321-331, Apr. 2022.
Segoni, S., Piciullo, L. & Gariano, S.L., A Review of the Recent Literature on Rainfall Thresholds for Landslide Occurrence, Landslides, 15, pp. 1483-1501, Mar. 2018.
Nandi, A. & Pal, A.K., Interpreting Machine Learning Models: Learn Model Interpretability and Explainability Methods, Apress, 2022.
Pourghasemi, H.R. & Rahmati, O., Prediction of the Landslide Susceptibility: Which Algorithm, Which Precision?, Catena, 162, pp. 177-192, Mar. 2018.
Bordoni, M., Corradini, B. , Lucchelli, L., Valentino, R., Bittelli, M., Vivaldi, V. & Meisina, C., Empirical and Physically Based Thresholds for the Occurrence of Shallow Landslides in a Prone Area of Northern Italian Apennines, Water, 11(2653), pp. 1-28, Dec. 2019.
Luca, D.L.D. & Versace, P., A General Formulation to Describe Empirical Rainfall Thresholds for Landslides, Procedia Earth and Planetary Science, 16, pp. 98-107, Oct. 2016.
Caracciolo, D., Arnone, E., Conti, F.L & Noto, L.V., Exploiting Historical Rainfall and Landslide Data in a Spatial Database for the Derivation of Critical Rainfall Thresholds, Environmental Earth Sciences, 76(222), pp. 1-16. Mar. 2017.
Gariano, S.L., Brunetti, M.T., Lovine, G., Melillo, M., Peruccacci, S., Terranova, O., Vennari, C. & Guzzetti, F., Calibration and Validation of Rainfall Thresholds for Shallow Landslide Forecasting in Sicily, Southern Italy, Geomorphology, 228, pp. 653-665, Jan. 2015.
Staley, D.M., Kean, J.W. & Cannon, S.H., Objective Definition of Rainfall Intensity?Duration Thresholds for the Initiation of Post-Fire Debris Flows In Southern California, Landslides, 10, pp. 547-562, Jun. 2012.
Gao, L., Zhang, L.M. & ASCE, F., Can Empirical Rainfall-Landslide Correlations be Extended to Future Extreme Storms?, Geo-Risk 2017, pp. 125-132, 2017.
Wang, L., Chen, Y., Huang, X., Zhang, L., Li, X. & Wang, S., Displacement Prediction Method of Rainfall-Induced Landslide Considering Multiple Influencing Factors, Natural Hazards, 115, pp. 1051-1069, Jan. 2023.
Berti, M., Martina, M.L.V, Franceschini, S., Pignone, S., Simoni, A. & Pizziolo, M., Probabilistic Rainfall Thresholds For Landslide Occurrence Using a Bayesian Approach, Journal of Geophysical Research: Earth Surface., 117(F4), pp. 507-521, Oct. 2012.
Formetta, G., Rago, V., Capparelli, G., Rigon, R., Muto, F. & Versace, P., Integrated Physically Based System For Modeling Landslide Susceptibility, Procedia Earth and Planetary Science, 9, pp. 74-82, Oct. 2014.
Jordanova, G., Gariano, S.L., Melillo, M., Peruccacci, S., Brunetti, M.T. & Jemec Aufli?, M., Determination of Empirical Rainfall Thresholds for Shallow Landslides In Slovenia Using an Automatic Tool, Water, 12(1449), pp. 1-15, May. 2020.
Marin, R.J., Physically Based and Distributed Rainfall Intensity and Duration Thresholds for Shallow Landslides, Landslides, 17, pp. 2907?2917, Jul. 2020.
Liu, Z., Gilbert, G., Cepeda, J.M., Lysdahl, A.O.K., Piciullo, L., Hefre, H. & Lacasse, S., Modelling of Shallow Landslides with Machine Learning Algorithms, Geoscience Frontiers, 12(1), pp. 385-393, Jan. 2021.
Casagli, N., Tofani, V., Morelli, S, Frodella, W., Ciampalini, A., Raspini, F. & Intrieri, E., Remote Sensing Techniques in Landslide Mapping and Monitoring, Workshop on World Landslide Forum 2017, pp. 1-19, 2017.
Casagli, N., Intrieri, E., Tofani, V., Gigli, G. & Raspini, F., Landslide Detection, Monitoring and Prediction with Remote-Sensing Techniques, Nature Reviews Earth & Environment, 4, pp. 51-64, Jan. 2023.
Jia, G., Tang, Q. & Xu, X., Evaluating The Performances of Satellite-Based Rainfall Data for Global Rainfall-Induced Landslide Warnings, Landslides, 17, p. 283?299, Feb. 2020.
Maulana, F.R., Wattimena, R.K. & Sulistianto, B., Integrated D-Insar and Ground-Based Radar for Open Pit Slope Stability Monitoring and Implications for Rock Mass Young?s Modulus Reduction, J. Eng. Technol. Sci., 55(3), pp. 247-260, Aug. 2023.
Ip, S.C.Y., Rahardjo, H. & Satyanaga, A., Three-Dimensional Slope Stability Analysis Incorporating Unsaturated Soil Properties in Singapore, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 15(2), pp. 98-112, Mar. 2020.
Kim, Y., Rahardjo, H., Nistor, M.M., Satyanaga, A., Leong, E.C. & Sham, A.W.L., Assessment of Critical Rainfall Scenarios for Slope Stability Analyses Based on Historical Rainfall Records In Singapore, Environmental Earth Sciences, 81(2), 39, Jan. 2022.
Lombardo, L., Opitz, T., Ardizzone, F., Guzzetti, F. & Huser, R., Space-Time Landslide Predictive Modelling, Earth-Science Reviews, 209(103318), pp. 1-32, Oct. 2020.
Sassa, K., Nagai, O., Solidum, R., Yamazaki, Y. & Ohta, H., An Integrated Model Simulating the Initiation and Motion of Earthquake and Rain Induced Rapid Landslides and Its Application to the 2006 Leyte Landslide, Landslides., 7(3), pp. 219-236, Jul. 2010.
Medina, V., Hlimann, M., Guo, Z., Lloret, A. & Vaunat, J., Fast Physically-Based Model for Rainfall-Induced Landslide Susceptibility Assessment at Regional Scale, Catena, 201, 105213, Jun. 2021.
Sassa, K., Dang, K., He, B., Takara, K., Inoue, K. & Nagai, O., A New High-Stress Undrained Ring-Shear Apparatus and its Application to the 1792 Unzen?Mayuyama Megaslide in Japan, Landslides, 11, pp. 827-842, Jul. 2014.
Montgomery, D.R. & Dietrich, W.E., A Physically Based Model for the Topographic Control on Shallow Landsliding, Water Resour Res., 30(4), pp. 1153-1171, Apr. 1994.
Satyanaga, A. & Rahardjo, H., Role of Unsaturated Soil Properties in the Development of Slope Susceptibility Map, Proceedings of the Institution of Civil Engineers ? Geotechnical Engineering, 175(3): pp. 276-288, Jun. 2022.
Ha, N.D., Sayama, T., Sassa, K., Takara, K., Uzuoka, R., Dang, K. & Pham, T.V., A Coupled Hydrological-Geotechnical Framework for Forecasting Shallow Landslide Hazard ? A Case Study in Halong City, Vietnam, Landslides, 17, pp. 1619?1634, Mar. 2020.
Sayama, T., Ozawa, G., Kawakami, T., Nabesaka, S. & Fukami, K., Rainfall-Runoff-Inundation Analysis of the 2010 Pakistan Flood in the Kabul River Basin, Hydrological Sciences Journal, 57(2), pp. 298-312, Feb. 2012.
Lissak, C., Bartsch, A., De Michele, M., Gomez, C., Maquaire, O., Raucoules, D. & Roulland, T., Remote Sensing for Assessing Landslides and Associated Hazards, Surv Geophys, 41, pp. 1391-1435, Sep. 2020.
Mart, A.G., A GIS-Physically-Based Emergency Methodology for Predicting Rainfall-Induced Shallow Landslide Zonation, Geomorphology, 359(107121), pp. 1-14, Jun. 2020.
Rahardjo, H. & Satyanaga, A., Sensing and Monitoring for Assessment of Rainfall-Induced Slope Failures in Residual Soil, Proceedings of the Institution of Civil Engineers ? Geotechnical Engineering, 172(6), pp. 496-506, Dec. 2019.
Joshi, A., Grover, J., Kanungo, D.P. & Panigrahi, R.K., Real-Time Landslide Monitoring, Detection and Early Warning System for Tangni Landslide, Proceedings of 5th International Conference on Cyber Security & Privacy in Communication Networks (ICCS) 2019, pp. 6-9, 2019.
Ahmed, M.Y. & Hamid, R.P., Landslide Susceptibility Mapping Using Machine Learning Algorithms And Comparison Of Their Performance At Abha Basin, Asir Region, Saudi Arabia, Geoscience Frontiers, 12(2), pp. 639-655, Mar. 2021.
Ng, C.W.W., Yang, B, Liu, Z.Q., Kwan, J.S.H. & Chen, L., Spatiotemporal Modelling of Rainfall-Induced Landslides Using Machine Learning, Landslides, 18, pp. 2499-2514, Apr. 2021.
Sreelakshmi, S., Vinod Chandra, S.S. & Shaji, E., Landslide Identification Using Machine Learning Techniques: Review, Motivation, And Future Prospects, Earth Science Informatics, 15, pp. 2063-2090, Nov. 2022.
Yang, W., A Modified Radial Basis Function Method for Predicting Debris Flow Mean Velocity, J. Eng. Technol. Sci., 49(5), pp. 561-574, Oct. 2017.
Li, Y., Rahardjo, H., Satyanaga, A., Rangarajan, S. & Lee, D.T., Soil Database Development in Singapore with the Application of Machine Learning Methods in Soil Properties Prediction, Engineering Geology, 306 (5), Sep. 2022.
Nguyen, H.T., Phan, T.T., Dao, T.C., Phan, T.M.N., Ta, P.V.D., Nguyen, C.N.T., Pham, N.H. & Huynh, H.X., Gene Family Abundance Visualization Based on Feature Selection Combined Deep Learning to Improve Disease Diagnosis, J. Eng. Technol. Sci. 53(1), pp. 135-150, Jan. 2021.
Eltouny, K., Gomaa, M. & Liang, X., Unsupervised Learning Methods for Data-Driven Vibration-Based Structural Health Monitoring: A Review, Sensors, 23(6), pp. 1-40, Mar. 2023.
Wang, H., Zhang, L., Yin, K., Luo, H & Li, J., Landslide Identification Using Machine Learning, Geoscience Frontiers, 12(1), pp. 351-364, Jan. 2020.
Pham, T.B. & Prakash, I., Evaluation And Comparison of Logitboost Ensemble, Fisher?s Linear Discriminant Analysis, Logistic Regression and Support Vector Machines Methods for Landslide Susceptibility Mapping, Geocarto Int, 34(3), pp. 316-333, Nov. 2017.
Zhou, C., Yin, K., Cao, Y., Ahmed, B., Li, Y., Catani, F. & Pourghasemi, H.R., Landslide Susceptibility Modeling Applying Machine Learning Methods: A Case Study From Longju in the Three Gorges Reservoir Area, China, Comput. Geosci, 12, pp. 23-37, Nov. 2017.
Goodfellow, I., Bengio, Y. & Courville, A., Deep Learning, Cambridge: The MIT Press, 2016.
Satyanaga, A., Rangarajan, S., Rahardjo, H., Li, Y. & Kim, Y., Soil Database for Development of Soil Properties Envelope, Engineering Geology, 304,106698, Jul. 2022.