2-Dimensional Materials for Performance Enhancement of Surface Plasmon Resonance Biosensor: Review Paper
DOI:
https://doi.org/10.5614/j.eng.technol.sci.2023.55.4.10Keywords:
2D materials, immobilization matrix, optical biosensor, sensitivity enhancement, surface plasmon resonanceAbstract
Surface plasmon resonance (SPR)--based biosensors compete and excel among optical biosensors because of exceptional features such as high sensitivity, label-free, and real-time measurement, allowing the observation of molecular binding kinetics. In SPR biosensors and other biosensor techniques, surface functionalization and bioreceptor attachment are effective strategies to improve sensor performance. The application of an appropriate immobilization matrix for the bioreceptor is an essential step in maximizing the absorption of the bioreceptor on the sensor surface, thereby improving a specific target-sensor interaction. Furthermore, the materials should provide excellent optical properties to enhance the response signal. The high surface-to-volume ratio and high optical absorption of 2D materials qualify these requirements, thus promising advancements for SPR biosensors. This article reviews the recent SPR biosensor study with the use of the 2D materials family to improve the sensor performance, including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), perovskite, and boron nitride (BN). The materials properties and enhancement mechanisms of different 2D materials are discussed comprehensively. This review was expected to provide a future perspective and design approach for 2D materials-based SPR biosensors.
Downloads
References
Mariani, S. & Minunni, M., Surface Plasmon Resonance Applications in Clinical Analysis, Analytical and Bioanalytical Chemistry, 406, pp. 2303-2323, 2014.
Liedberg, B., Nylander, C. & Lunstr, I., Surface Plasmon Resonance for Gas Detection and Biosensing, Sensors and Actuators, 4, pp. 299-304, 1983.
Rebe Raz, S., Leontaridou, M., Bremer, M. G., Peters, R. & Weigel, S., Development of Surface Plasmon Resonance-Based Sensor for Detection of Silver Nanoparticles in Food and the Environment, Analytical and Bioanalytical Chemistry, 403, pp. 2843-2850, 2012.
Shankaran, D.R., Gobi, K.V. & Miura, N., Recent Advancements in Surface Plasmon Resonance Immunosensors for Detection of Small Molecules of Biomedical, Food and Environmental Interest, Sensors and Actuators B: Chemical, 121(1), pp. 158-177, 2007.
Situ, C., Mooney, M.H., Elliott, C.T. & Buijs, J., Advances in Surface Plasmon Resonance Biosensor Technology Towards High-Throughput, Food-Safety Analysis, TrAC Trends in Analytical Chemistry, 29(11), pp. 1305-1315, 2010.
Narsaiah, K., Jha, S.N., Bhardwaj, R., Sharma, R. & Kumar, R., Optical Biosensors for Food Quality and Safety Assurance?A Review, Journal of Food Science And Technology, 49, pp. 383-406, 2012.
Menon, P.S., Mulyanti, B., Jamil, N.A., Wulandari, C., Nugroho, H.S., Mei, G.S., Abidin, N.F.Z., Hasanah, L., Pawinanto, R.E. & Berhanuddin, D.D., Refractive Index and Sensing of Glucose Molarities Determined Using Au-Cr K-SPR At 670/785 nm Wavelength, Sains Malaysiana, 48(6), pp.1259-1265, 2019.
Hasanah, L., Nugroho, H.S., Wulandari, C., Mulyanti, B., Berhanuddin, D.D., Haron, M.H., Menon, P.S., Zain, A.R.M., Hamidah, I., Khairurrijal, K. & Mamat, R., Enhanced Sensitivity of Microring Resonator-Based Sensors Using the Finite Difference Time Domain Method to Detect Glucose Levels for Diabetes Monitoring, Applied Sciences, 10(12), 4191, 2020.
Helmerhorst, E., Chandler, D.J., Nussio, M. & Mamotte, C.D., Real-Time and Label-Free Bio-Sensing of Molecular Interactions by Surface Plasmon Resonance: A Laboratory Medicine Perspective, The Clinical Biochemist Reviews, 33(4), pp. 161-173, 2012.
Brennan, D., Justice, J., Corbett, B., McCarthy, T. & Galvin, P., Emerging Optofluidic Technologies for Point-of-Care Genetic Analysis Systems: A Review, Analytical and Bioanalytical Chemistry, 395, pp. 621-636, 2009.
Mishra, S.K., Zou, B. & Chiang, K.S., Surface-Plasmon-Resonance Refractive-Index Sensor with Cu-Coated Polymer Waveguide, IEEE Photonics Technology Letters, 28(17), pp. 1835-1838, 2016.
Shukla, S., Sharma, N.K. & Sajal, V., Sensitivity Enhancement of A Surface Plasmon Resonance Based Fiber Optic Sensor Using Zno Thin Film: A Theoretical Study, Sensors and Actuators B: Chemical, 206, pp. 463-470, 2015.
Homola, J., Yee, S.S. & Gauglitz, G., Surface Plasmon Resonance Sensors, Sensors and Actuators B: Chemical, 54(1-2), pp. 3-15, 1999.
Miyazaki, C.M., Shimizu, F.M. & Ferreira, M., Surface Plasmon Resonance (SPR) for Sensors and Biosensors, in Nanocharacterization Techniques, pp. 183-200, William Andrew Publishing, 2017.
Mauriz, E., Garc-Ferndez, M.C., & Lechuga, L.M., Towards the Design of Universal Immunosurfaces For SPR-Based Assays: A Review, TrAC Trends in Analytical Chemistry, 79, pp. 191-198, 2016.
Poma, A., Turner, A.P. & Piletsky, S.A., Advances in the Manufacture of MIP Nanoparticles, Trends in Biotechnology, 28(12), pp. 629-637, 2010.
?ov H. & Homola, J., Surface Plasmon Resonance Sensing of Nucleic Acids: A Review, Analytica Chimica Acta, 773, pp. 9-23, 2013.
Zhou, J., Battig, M.R. & Wang, Y., Aptamer-Based Molecular Recognition for Biosensor Development, Analytical and Bioanalytical Chemistry, 398, pp. 2471-2480, 2010.
Hashim, H.S., Fen, Y.W., Omar, N.A.S., Abdullah, J., Daniyal, W.M.E.M.M. & Saleviter, S., Detection of Phenol by Incorporation of Gold Modified-Enzyme Based Graphene Oxide Thin Film with Surface Plasmon Resonance Technique, Optics Express, 28(7), pp. 9738-9752, 2020.
D'Agata, R. & Spoto, G., Artificial DNA and Surface Plasmon Resonance, Artificial DNA: PNA & XNA, 3(2), pp. 45-52, 2012.
Xiao, S.J., Brunner, S. & Wieland, M., Reactions of Surface Amines with Heterobifunctional Cross-Linkers Bearing Both Succinimidyl Ester and Maleimide for Grafting Biomolecules, The Journal of Physical Chemistry B, 108(42), pp. 16508-16517, 2004.
Gunda, N.S.K., Singh, M., Norman, L., Kaur, K. & Mitra, S.K., Optimization and Characterization of Biomolecule Immobilization on Silicon Substrates Using (3-Aminopropyl) Triethoxysilane (APTES) and Glutaraldehyde Linker, Applied Surface Science, 305, pp. 522-530, 2014.
Kaushik, S., Tiwari, U.K., Deep, A. & Sinha, R.K., Two-Dimensional Transition Metal Dichalcogenides Assisted Biofunctionalized Optical Fiber SPR Biosensor for Efficient and Rapid Detection of Bovine Serum Albumin, Scientific Reports, 9(1), 6987, 2019.
Mei, G.S., Menon, P.S. & Hegde, G., ZnO for Performance Enhancement of Surface Plasmon Resonance Biosensor: A Review, Materials Research Express, 7(1), 012003, 2020.
Szunerits, S., Maalouli, N., Wijaya, E., Vilcot, J.P. & Boukherroub, R., Recent Advances in the Development of Graphene-Based Surface Plasmon Resonance (SPR) Interfaces, Analytical and Bioanalytical Chemistry, 405, pp. 1435-1443, 2013.
Zhao, P., Chen, Y., Chen, Y., Hu, S., Chen, H., Xiao, W., Liu, G., Tang, Y., Shi, J., He, Z., Luo, Y. & Chen, Z., A MoS 2 Nanoflower and Gold Nanoparticle-Modified Surface Plasmon Resonance Biosensor for a Sensitivity-Improved Immunoassay, Journal of Materials Chemistry C, 8(20), pp. 6861-6868, 2020.
Oh, S., Moon, J., Kang, T., Hong, S. & Yi, J., Enhancement of Surface Plasmon Resonance (SPR) Signals Using Organic Functionalized Mesoporous Silica on a Gold Film, Sensors and Actuators B: Chemical, 114(2), pp. 1096-1099, 2006.
Xiao, M., Wei, S., Chen, J., Tian, J., Brooks III, C.L., Marsh, E.N.G. & Chen, Z., Molecular Mechanisms of Interactions Between Monolayered Transition Metal Dichalcogenides and Biological Molecules, Journal of the American Chemical Society, 141(25), pp. 9980-9988, 2019.
Peng, C. & Zhang, X., Chemical Functionalization of Graphene Nanoplatelets with Hydroxyl, Amino, and Carboxylic Terminal Groups, Chemistry, 3(3), pp. 873-888, 2021.
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N. & Strano, M.S., Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides, Nature Nanotechnology, 7(11), pp. 699-712, 2012.
Geim, A.K., Graphene: Status and Prospects, Science, 324(5934), pp. 1530-1534, 2009.
Xu, X., Yao, W., Xiao, D. & Heinz, T. F., Spin and Pseudospins in Layered Transition Metal Dichalcogenides, Nature Physics, 10(5), pp. 343-350, 2014.
Xiao, D., Liu, G.B., Feng, W., Xu, X. & Yao, W., Coupled Spin and Valley Physics in Monolayers of MoS2 and other Group-VI Dichalcogenides, Physical Review Letters, 108(19), 196802, 2012.
Mak, K.F., Lee, C., Hone, J., Shan, J. & Heinz, T. F., Atomically Thin MoS2: A New Direct-Gap Semiconductor, Physical Review Letters, 105(13), 136805, 2010.
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A.C., Graphene Photonics and Optoelectronics, Nature Photonics, 4(9), pp. 611-622, 2010.
Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A., Two-Dimensional Material Nanophotonics, Nature Photonics, 8(12), pp. 899-907, 2014.
Liu, K., Zhang, J., Jiang, J., Xu, T., Wang, S., Chang, P., Zhang, Z., Ma, Z. & Liu, T., MoSe2-Au based Sensitivity Enhanced Optical Fiber Surface Plasmon Resonance Biosensor for Detection of Goat-Anti-Rabbit IgG, IEEE Access, 8, pp. 660-668, 2019.
Kumar, R., Kushwaha, A.S., Srivastava, M., Mishra, H. & Srivastava, S.K., Enhancement in Sensitivity of Graphene-Based Zinc Oxide Assisted Bimetallic Surface Plasmon Resonance (SPR) Biosensor, Applied Physics A, 124, pp. 1-10, 2018.
Kretschmann, E. & Raether, H., Radiative Decay of Non Radiative Surface Plasmons Excited by Light, Zeitschrift f Naturforschung A, 23(12), pp. 2135-2136, 1968.
Homola, J., Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species, Chemical reviews, 108(2), pp. 462-493, 2008.
Hinman, S.S., McKeating, K.S. & Cheng, Q., Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility, Analytical Chemistry, 90(1), pp. 19-39, 2018.
Zhu, J. & Li, N., Novel High Sensitivity SPR Sensor Based on Surface Plasmon Resonance Technology and IMI Waveguide Structure, Results in Physics, 17, 103049, 2020.
Du, W., Miller, L. & Zhao, F., Numerical Study of Graphene/Au/Sic Waveguide-Based Surface Plasmon Resonance Sensor, Biosensors, 11(11), 455, 2021.
Dai, Y., Xu, H., Wang, H., Lu, Y. & Wang, P., Experimental Demonstration of High Sensitivity for Silver Rectangular Grating-Coupled Surface Plasmon Resonance (SPR) Sensing, Optics Communications, 416, pp. 66-70, 2018.
Zeng, L., Chen, M., Yan, W., Li, Z. & Yang, F., Si-Grating-Assisted SPR Sensor with High Figure of Merit Based on Fabry?Pot Cavity, Optics Communications, 457, 124641, 2020.
Pandey, P.S., Raghuwanshi, S.K. & Kumar, S., Recent Advances in Two-Dimensional Materials-Based Kretschmann Configuration for SPR Sensors: A Review, IEEE Sensors Journal, 22(2), pp. 1069-1080, 2021.
Taya, S.A., P-Polarized Surface Waves in a Slab Waveguide with Left-Handed Material for Sensing Applications, Journal of Magnetism and Magnetic Materials, 377, pp. 281-285, 2015.
Qu, J.H., Dillen, A., Saeys, W., Lammertyn, J. & Spasic, D., Advancements in SPR Biosensing Technology: An Overview of Recent Trends in Smart Layers Design, Multiplexing Concepts, Continuous Monitoring and In Vivo Sensing, Analytica Chimica Acta, 1104, pp. 10-27, 2020.
Abadla, M.M., & Taya, S.A., Excitation of TE Surface Polaritons on Metal?NIM Interfaces, Optik, 125(3), pp. 1401-1405, 2014.
Gupta, B.D., Shrivastav, A.M. & Usha, S.P., Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting, Sensors, 16(9), 1381, 2016.
Malachovska, V., Ribaut, C., Voisin, V., Surin, M., Leclere, P., Wattiez, R. & Caucheteur, C., Fiber-Optic SPR Immunosensors Tailored to Target Epithelial Cells Through Membrane Receptors, Analytical Chemistry, 87(12), pp. 5957-5965, 2015.
Zhao, Y., Hu, X. G., Hu, S. & Peng, Y., Applications of Fiber-Optic Biochemical Sensor in Microfluidic Chips: A Review, Biosensors and Bioelectronics, 166, 112447, 2020.
Moradi, V., Akbari, M. & Wild, P., A Fluorescence-Based Ph Sensor with Microfluidic Mixing and Fiber Optic Detection for Wide Range Ph Measurements, Sensors and Actuators A: Physical, 297, pp. 111507, 2019.
Arghir, I., Delport, F., Spasic, D. & Lammertyn, J., Smart Design of Fiber Optic Surfaces for Improved Plasmonic Biosensing, New Biotechnology, 32(5), pp. 473-484, 2015.
Caucheteur, C., Guo, T. & Albert, J., Review of Plasmonic Fiber Optic Biochemical Sensors: Improving the Limit of Detection, Analytical and Bioanalytical Chemistry, 407, pp. 3883-3897, 2015.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306(5696), pp. 666-669, 2004.
Bolotin, K I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. & Stormer, H.L., Ultrahigh Electron Mobility in Suspended Graphene, Solid State Communications, 146(9-10), pp. 351-355, 2008.
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. & Lau, C.N., Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, 8(3), pp. 902-907, 2008.
Lee, C., Wei, X., Kysar, J.W. & Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321(5887), pp. 385-388, 2008.
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R. & Geim, A.K., Fine Structure Constant Defines Visual Transparency of Graphene, Science, 320(5881), pp. 1308-1308, 2008.
Zeng, M., Xiao, Y., Liu, J., Lu, W. & Fu, L., Controllable Fabrication of Nanostructured Graphene towards Electronics, Advanced Electronic Materials, 2(4), 1500456, 2016.
Stanford, M.G., Zhang, C., Fowlkes, J.D., Hoffman, A., Ivanov, I.N., Rack, P.D. & Tour, J.M., High-Resolution Laser-Induced Graphene. Flexible Electronics Beyond the Visible Limit, ACS Applied Materials & Interfaces, 12(9), pp. 10902-10907, 2020.
Polat, E.O., Uzlu, H.B., Balci, O., Kakenov, N., Kovalska, E. & Kocabas, C., Graphene-Enabled Optoelectronics on Paper, ACS Photonics, 3(6), pp.964-971, 2016.
Zhang, Z., Lin, P., Liao, Q., Kang, Z., Si, H. & Zhang, Y., Graphene?Based Mixed?Dimensional Van Der Waals Heterostructures for Advanced Optoelectronics, Advanced Materials, 31(37), 1806411, 2019.
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A.C., Graphene Photonics and Optoelectronics, Nature Photonics, 4(9), pp. 611-622, 2010.
Wang, J., Ma, F., & Sun, M., Graphene, Hexagonal Boron Nitride, and Their Heterostructures: Properties and Applications, RSC Advances, 7(27), pp. 16801-16822, 2017.
Yu, W., Sisi, L., Haiyan, Y. & Jie, L., Progress in The Functional Modification of Graphene/Graphene Oxide: A Review, RSC Advances, 10(26), pp. 15328-15345, 2020.
Avouris, P., Graphene: Electronic and Photonic Properties and Devices, Nano Letters, 10(11), pp. 4285-4294, 2010.
Wang, X.L., Dou, S.X. & Zhang, C., Zero-gap Materials for Future Spintronics, Electronics and Optics, NPG Asia Materials, 2(1), pp. 31-38, 2010.
Junaid, M., Khir, M.M., Witjaksono, G., Tansu, N., Saheed, M.S.M., Kumar, P., Ullah, Z., Yar, A. & Usman, F., Boron-Doped Reduced Graphene Oxide with Tunable Bandgap and Enhanced Surface Plasmon Resonance, Molecules, 25(16), 3646, 2020.
Xu, X., Liu, C., Sun, Z., Cao, T., Zhang, Z., Wang, E., Liu, Z. & Liu, K., Interfacial Engineering in Graphene Bandgap, Chemical Society Reviews, 47(9), pp. 3059-3099, 2018.
Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H., Narrow Graphene Nanoribbons from Carbon Nanotubes, Nature, 458(7240), pp. 877-880, 2009.
Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Mullen, K. & Fasel, R., Atomically Precise Bottom-Up Fabrication of Graphene Nanoribbons, Nature, 466(7305), pp. 470-473, 2010.
Park, J., Kim, Y., Park, S.Y., Sung, S.J., Jang, H.W. & Park, C.R., Band Gap Engineering of Graphene Oxide for Ultrasensitive NO2 Gas Sensing, Carbon, 159, pp. 175-184, 2020.
Du, X., Skachko, I., Barker, A. & Andrei, E.Y, Approaching Ballistic Transport in Suspended Graphene, Nature Nanotechnology, 3(8), pp. 491-495, 2008.
Kong, L., Enders, A., Rahman, T.S. & Dowben, P.A., Molecular Adsorption on Graphene, Journal of Physics: Condensed Matter, 26(44), 443001, 2014.
Bhushan, B. (Ed.), Encyclopedia of Nanotechnology (No. 544.1), Dordrecht, The Netherlands: Springer, 2012.
Li, Z., Henriksen, E.A., Jiang, Z., Hao, Z., Martin, M.C., Kim, P., Stormer, H.L. & Basov, D.N., Dirac Charge Dynamics in Graphene by Infrared Spectroscopy, Nature Physics, 4(7), pp. 532-535, 2008.
Wright, A.R., Cao, J.C. & Zhang, C., Enhanced Optical Conductivity of Bilayer Graphene Nanoribbons in the Terahertz Regime, Physical Review Letters, 103(20), 207401, 2009.
Frindt, R.F. & Yoffe, A.D., Physical Properties of Layer Structures: Optical Properties and Photoconductivity of Thin Crystals of Molybdenum Disulphide, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 273(1352), pp. 69-83, 1963.
Joensen, P., Frindt, R.F. & Morrison, S.R., Single-Layer MoS2, Materials Research Bulletin, 21(4), pp. 457-461, 1986.
Tenne, R., Margulis, L., Genut, M.E. & Hodes, G., Polyhedral and Cylindrical Structures of Tungsten Disulphide, Nature, 360(6403), pp. 444-446, 1992.
Feldman, Y., Wasserman, E., Srolovitz, D.J. & Tenne, R., High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes, Science, 267(5195), pp. 222-225, 1995.
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V. & Geim, A.K., Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences, 102(30), pp. 10451-10453, 2005.
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A., 2D Transition Metal Dichalcogenides, Nature Reviews Materials, 2(8), pp. 1-15, 2017.
Cheiwchanchamnangij, T. & Lambrecht, W. R., Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS2, Physical Review B, 85(20), 205302, 2012.
Lebegue, S. & Eriksson, O., Electronic Structure of Two-Dimensional Crystals from Ab Initio Theory, Physical Review B, 79(11), 115409, 2009.
Mak, K.F. & Shan, J., Photonics and Optoelectronics of 2D Semiconductor Transition Metal Dichalcogenides, Nature Photonics, 10(4), pp. 216-226, 2016.
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G. & Wang, F., Emerging Photoluminescence in Monolayer MoS2, Nano Letters, 10(4), pp. 1271-1275, 2010.
Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X., Valley Polarization in MoS2 Monolayers by Optical Pumping, Nature Nanotechnology, 7(8), pp. 490-493, 2012.
Haug, H. & Koch, S.W., Quantum Theory of the Optical and Electronic Properties of Semiconductors, World Scientific Publishing Co. Pte. Ltd, 2004.
Chen, Y., Hu, S., Wang, H., Zhi, Y., Luo, Y., Xiong, X., Dong, J., Jiang, Z., Zhu, W., Qiu, W., Lu, H., Guan, H., Zhong, Y., Yu, J., Zhang, J. & Chen, Z., MoS2 Nanosheets Modified Surface Plasmon Resonance Sensors for Sensitivity Enhancement, Advanced Optical Materials, 7(13), 1900479, 2019.
Wang, Q., Jiang, X., Niu, L.Y. & Fan, X.C., Enhanced Sensitivity of Bimetallic Optical Fiber SPR Sensor Based on MoS2 Nanosheets, Optics and Lasers in Engineering, 128, 105997, 2020.
Song, H., Wang, Q. & Zhao, W. M., A Novel SPR Sensor Sensitivity-Enhancing Method for Immunoassay by Inserting MoS2 Nanosheets between Metal Film and Fiber, Optics and Lasers in Engineering, 132, 106135, 2020.
Hu, H., Zavabeti, A., Quan, H., Zhu, W., Wei, H., Chen, D. & Ou, J.Z., Recent Advances in Two-Dimensional Transition Metal Dichalcogenides for Biological Sensing, Biosensors and Bioelectronics, 142, 111573, 2019.
Mak, K.F., He, K., Lee, C., Lee, G.H., Hone, J., Heinz, T.F. & Shan, J., Tightly Bound Trions in Monolayer MoS2, Nature Materials, 12(3), pp. 207-211, 2013.
Ramasubramaniam, A., Large Excitonic Effects in Monolayers of Molybdenum and Tungsten Dichalcogenides, Physical Review B, 86(11), 115409, 2012.
Qiu, D.Y., Da Jornada, F.H. & Louie, S.G., Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States, Physical Review Letters, 111(21), 216805, 2013.
Wang, G., Marie, X., Gerber, I., Amand, T., Lagarde, D., Bouet, L., Vidal, M., Balocchi, A. & Urbaszek, B., Giant Enhancement of the Optical Second-Harmonic Emission of WSe 2 Monolayers by Laser Excitation at Exciton Resonances, Physical Review Letters, 114(9), 097403, 2015.
Zhang, C., Johnson, A., Hsu, C.L., Li, L.J. & Shih, C.K., Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending, Nano Letters, 14(5), pp. 2443-2447, 2014.
Ye, Z., Cao, T., O?brien, K., Zhu, H., Yin, X., Wang, Y., Louie, S.G. & Zhang, X., Probing Excitonic Dark States in Single-layer Tungsten Disulphide, Nature, 513(7517), pp. 214-218, 2014.
He, K., Kumar, N., Zhao, L., Wang, Z., Mak, K.F., Zhao, H. & Shan, J., Tightly Bound Excitons in Monolayer WSe2, Physical Review Letters, 113(2), 026803, 2014.
Chernikov, A., Berkelbach, T.C., Hill, H.M., Rigosi, A., Li, Y., Aslan, B., Reichman, D.R., Hybertsen, M.S. & Heinz, T.F., Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2, Physical Review Letters, 113(7), 076802, 2014.
Berkelbach, T.C., Hybertsen, M.S. & Reichman, D.R., Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides, Physical Review B, 88(4), 045318, 2013.
Ugeda, M.M., Bradley, A.J., Shi, S.F., Da Jornada, F.H., Zhang, Y., Qiu, D.Y., Ruan, W., Mo, S.K., Hussain, Z., Shen, Z.X., Wang, F., Louie, S.G. & Crommie, M.F., Giant Bandgap Renormalization and Excitonic Effects in a Monolayer Transition Metal Dichalcogenide Semiconductor, Nature Materials, 13(12), pp. 1091-1095, 2014.
Singh, S., Sharma, A.K., Lohia, P. & Dwivedi, D.K., Theoretical Analysis of Sensitivity Enhancement of Surface Plasmon Resonance Biosensor with Zinc Oxide and Blue Phosphorus/Mos2 Heterostructure, Optik, 244, pp. 167618, 2021.
Jiao, L., Ma, F., Wang, X., Li, Z., Hu, Z. & Yin, Q., Quinolinediol Molecule Electrode and MXene for Asymmetric Supercapacitors with Efficient Energy Storage, ACS Applied Energy Materials, 4(8), pp. 7811-7820, 2021.
Anasori, B., Lukatskaya, M.R. & Gogotsi, Y., 2D Metal Carbides and Nitrides (Mxenes) for Energy Storage, Nature Reviews Materials, 2(2), pp. 1-17, 2017.
Mustakeem, M., El-Demellawi, J.K., Obaid, M., Ming, F., Alshareef, H.N. & Ghaffour, N., MXene-coated Membranes for Autonomous Solar-Driven Desalination, ACS Applied Materials & Interfaces, 14(4), pp. 5265-5274, 2022.
Wang, Y., Nie, J., He, Z., Zhi, Y., Ma, X. & Zhong, P., Ti3C2T x MXene Nanoflakes Embedded with Copper Indium Selenide Nanoparticles for Desalination and Water Purification through High-Efficiency Solar-Driven Membrane Evaporation, ACS Applied Materials & Interfaces, 14(4), pp. 5876-5886, 2022.
Mehdi Aghaei, S., Aasi, A. & Panchapakesan, B., Experimental and Theoretical Advances in MXene-based Gas Sensors, ACS Omega, 6(4), pp. 2450-2461, 2021.
Jin, L., Wu, C., Wei, K., He, L., Gao, H., Zhang, H., Zhang, K., Asiri, A.M., Alamry, K.A., Yang, L. & Chu, X., Polymeric Ti3C2T x MXene Composites for Room Temperature Ammonia Sensing, ACS Applied Nano Materials, 3(12), pp. 12071-12079, 2020.
Fan, Z., He, H., Yu, J., Liu, L., Liu, Y. & Xie, Z., Lightweight Three-Dimensional Cellular Mxene Film for Superior Energy Storage and Electromagnetic Interference Shielding, ACS Applied Energy Materials, 3(9), pp. 8171-8178, 2020.
Liu, C., Wei, X., Hao, S., Zong, B., Chen, X., Li, Z. & Mao, S., Label-Free, Fast Response, and Simply Operated Silver Ion Detection with a Ti3C2Tx MXene Field-Effect Transistor, Analytical Chemistry, 93(22), pp. 8010-8018, 2021.
Liu, C., Hao, S., Chen, X., Zong, B. & Mao, S., High Anti-Interference Ti3C2Tx MXene Field-Effect-Transistor-Based Alkali Indicator, ACS Applied Materials & Interfaces, 12(29), pp. 32970-32978, 2020.
Sajid, M., MXenes: Are They Emerging Materials for Analytical Chemistry Applications? ? A Review, Analytica Chimica Acta, 1143, pp. 267-280, 2021.
Karlsson, L.H., Birch, J., Halim, J., Barsoum, M.W. & Persson, P.O., Atomically Resolved Structural and Chemical Investigation of Single Mxene Sheets, Nano Letters, 15(8), pp. 4955-4960, 2015.
Wang, X., Shen, X., Gao, Y., Wang, Z., Yu, R., & Chen, L., Atomic-scale Recognition of Surface Structure and Intercalation Mechanism of Ti3C2X, Journal of the American Chemical Society, 137(7), pp. 2715-2721, 2015.
Halim, J., Kota, S., Lukatskaya, M.R., Naguib, M., Zhao, M.Q., Moon, E.J., Pitock, J., Nanda, J., May, S.J., Gogotsi, Y. & Barsoum, M.W., Synthesis and Characterization of 2D Molybdenum Carbide (MXene), Advanced Functional Materials, 26(18), pp. 3118-3127, 2016.
Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B. C., Hultman, L., Kent, P.R.C., Gogotsi, Y. & Barsoum, M. W., Two-dimensional, Ordered, Double Transition Metals Carbides (MXenes), ACS Nano, 9(10), pp. 9507-9516, 2015.
Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y. & Barsoum, M.W., Two?dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Advanced Materials, 23(37), pp. 4248-4253, 2011.
Weng, H., Ranjbar, A., Liang, Y., Song, Z., Khazaei, M., Yunoki, S., Arai, M., Kawazoe, Y., Fang, Z. & Dai, X., Large-gap Two-dimensional Topological Insulator in Oxygen Functionalized MXene, Physical Review B, 92(7), 075436, 2015.
Si, C., Jin, K. H., Zhou, J., Sun, Z., & Liu, F., Large-gap Quantum Spin Hall state in MXenes: D-band Topological Order in a Triangular Lattice, Nano Letters, 16(10), pp. 6584-6591, 2016.
Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T. & Yunoki, S., Electronic Properties and Applications of MXenes: A Theoretical Review, Journal of Materials Chemistry C, 5(10), pp. 2488-2503, 2017.
Gao, L., Li, C., Huang, W., Mei, S., Lin, H., Ou, Q., Zhang, Y., Guo, J., Zhang, F., Xu, S. & Zhang, H., MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications, Chemistry of Materials, 32(5), pp. 1703-1747, 2020.
Li, L., Effects of the Interlayer Interaction and Electric Field on the Band Gap of Polar Bilayers: A Case Study of Sc2CO2, The Journal of Physical Chemistry C, 120(43), pp. 24857-24865, 2016.
Lee, Y., Hwang, Y., Cho, S.B. & Chung, Y.C., Achieving a Direct Band Gap in Oxygen Functionalized-monolayer Scandium Carbide by Applying an Electric Field, Physical Chemistry Chemical Physics, 16(47), pp. 26273-26278, 2014.
Lee, Y., Cho, S.B. & Chung, Y.C., Tunable Indirect to Direct Band Gap Transition of Monolayer Sc2CO2 By The Strain Effect, ACS Applied Materials & Interfaces, 6(16), pp. 14724-14728, 2014.
Yu, X.F., Cheng, J.B., Liu, Z.B., Li, Q.Z., Li, W.Z., Yang, X. & Xiao, B., The Band Gap Modulation of Monolayer Ti 2 CO 2 by Strain, RSC Advances, 5(39), pp. 30438-30444, 2015.
Khazaei, M., Arai, M., Sasaki, T., Chung, C.Y., Venkataramanan, N.S., Estili, M., Sakka, Y. & Kawazoe, Y., Novel Electronic and Magnetic Properties of Two?Dimensional Transition Metal Carbides and Nitrides, Advanced Functional Materials, 23(17), pp. 2185-2192, 2013.
Halim, J., Lukatskaya, M.R., Cook, K.M., Lu, J., Smith, C.R., Na?slund, L., May, S.J., Hultman, L., Gogotsi, Y., Eklund, P. & Barsoum, M. W., Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films, Chemistry of Materials, 26(7), pp. 2374-2381, 2014.
Mariano, M., Mashtalir, O., Antonio, F.Q., Ryu, W.H., Deng, B., Xia, F., Gogotsi, Y. & Taylor, A.D., Solution-Processed Titanium Carbide Mxene Films Examined as Highly Transparent Conductors, Nanoscale, 8(36), pp. 16371-16378, 2016.
Berdiyorov, G.R., Optical Properties of Functionalized Ti3C2T2 (T= F, O, OH) MXene: First-principles Calculations, AIP Advances, 6(5), 2016.
Xie, Y. & Kent, P.R.C., Hybrid Density Functional Study of Structural and Electronic Properties of Functionalized Ti n+ 1 X n (X= C, N) Monolayers, Physical Review B, 87(23), 235441, 2013.
Hantanasirisakul, K. & Gogotsi, Y., Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes), Advanced Materials, 30(52), 1804779, 2018.
Fu, B., Sun, J., Wang, C., Shang, C., Xu, L., Li, J. & Zhang, H., MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics, Small, 17(11), 2006054, 2021.
Agravat, D., Patel, S.K., Almawgani, A.H., Irfan, M., Armghan, A. & Taya, S.A., Graphite-based Surface Plasmon Resonance Structure using Al2O3-TiO2-ZrO2 Materials for Solar Thermal Absorption, Plasmonics, pp. 1-12, 2023.
Chung, K., Lee, J.S., Kim, E., Lee, K.E., Kim, K., Lee, J., Kim, D., Kim, S.O., Jeon, S., Park, H., Kim, D.W. & Kim, D.H., Enhancing the Performance of Surface Plasmon Resonance Biosensor via Modulation of Electron Density at the Graphene?Gold Interface, Advanced Materials Interfaces, 5(19), 1800433, 2018.
Saleviter, S., Fen, Y.W., Daniyal, W.M.E.M.M., Abdullah, J., Sadrolhosseini, A.R. & Omar, N.A.S., Design and Analysis of Surface Plasmon Resonance Optical Sensor for Determining Cobalt Ion Based on Chitosan-Graphene Oxide Decorated Quantum Dots-Modified Gold Active Layer, Optics Express, 27(22), pp. 32294-32307, 2019.
Rahman, M.S., Hasan, M.R., Rikta, K.A. & Anower, M.S., A Novel Graphene Coated Surface Plasmon Resonance Biosensor with Tungsten Disulfide (WS2) for Sensing DNA Hybridization, Optical Materials, 75, pp. 567-573, 2018.
Rahman, M.S., Anower, M.S., Hasan, M.R., Hossain, M.B. & Haque, M.I., Design and Numerical Analysis of Highly Sensitive Au-MoS2-Graphene Based Hybrid Surface Plasmon Resonance Biosensor, Optics Communications, 396, pp. 36-43, 2017.
Taya, S.A., Doghmosh, N., Almawgani, A.H., Hindi, A.T., Colak, I., Alqanoo, A.A., Patel, S.K. & Pal, A., Surface Plasmon Resonance Biosensor Based on STO and Graphene Sheets for Detecting Two Commonly Used Buffers: TRIS?Borate-EDTA and Dulbecco Phosphate Buffered Saline, Plasmonics, pp. 1-9, 2023.
Taya, S.A., Al-Ashi, N.E., Ramahi, O.M., Colak, I. & Amiri, I.S., Surface Plasmon Resonance-Based Optical Sensor Using a Thin Layer of Plasma, JOSA B, 38(8), pp. 2362-2367, 2021.
Meshginqalam, B., Ahmadi, M.T., Ismail, R. & Sabatyan, A., Graphene/graphene Oxide-Based Ultrasensitive Surface Plasmon Resonance Biosensor, Plasmonics, 12, pp. 1991-1997, 2017.
Verma, A., Prakash, A. & Tripathi, R., Performance Analysis of Graphene Based Surface Plasmon Resonance Biosensors for Detection of Pseudomonas-Like Bacteria, Optical and Quantum Electronics, 47, pp. 1197-1205, 2015.
Bhavsar, K., Prabhu, R. & Pollard, P., Ultrasensitive Graphene Coated SPR Sensor for Biosensing Applications, Optical Sensors, 9506, pp. 173-178, SPIE, 2015.
Panda, A., Pukhrambam, P.D. & Keiser, G., Performance Analysis of Graphene-Based Surface Plasmon Resonance Biosensor for Blood Glucose and Gas Detection, Applied Physics A, 126(3), 2020. doi: 10.1007/s00339-020-3328-8.
Pal, S., Verma, A., Prajapati, Y.K. & Saini, J.P., Influence of Black Phosphorous on Performance of Surface Plasmon Resonance Biosensor, Optical and Quantum Electronics, 49, pp. s1-13, 2017.
Wang, L., Zhu, C., Han, L., Jin, L., Zhou, M. & Dong, S., Label-free, Regenerative and Sensitive Surface Plasmon Resonance and Electrochemical Aptasensors Based on Graphene, Chemical Communications, 47(27), pp. 7794-7796, 2011.
Cai, L., Zhan, R., Pu, K.Y., Qi, X., Zhang, H., Huang, W. & Liu, B., Butterfly-shaped Conjugated Oligoelectrolyte/Graphene Oxide Integrated Assay for Light-Up Visual Detection of Heparin, Analytical Chemistry, 83(20), pp. 7849-7855, 2011.
Gilje, S., Han, S., Wang, M., Wang, K.L. & Kaner, R.B., A Chemical Route to Graphene for Device Applications, Nano Letters, 7(11), pp. 3394-3398, 2007.
Wu, Q., Sun, Y., Ma, P., Zhang, D., Li, S., Wang, X. & Song, D., Gold Nanostar-Enhanced Surface Plasmon Resonance Biosensor Based on Carboxyl-Functionalized Graphene Oxide, Analytica Chimica Acta, 913, pp. 137-144, 2016.
Subramanian, P., Barka-Bouaifel, F., Bouckaert, J., Yamakawa, N., Boukherroub, R. & Szunerits, S., Graphene-coated Surface Plasmon Resonance Interfaces for Studying the Interactions between Bacteria and Surfaces, ACS Applied Materials & Interfaces, 6(8), pp. 5422-5431, 2014.
Parab, H.J., Jung, C., Lee, J.H. & Park, H.G., A Gold Nanorod-Based Optical DNA Biosensor for the Diagnosis of Pathogens, Biosensors and Bioelectronics, 26(2), pp. 667-673, 2010.
Zhang, J., Sun, Y., Xu, B., Zhang, H., Gao, Y., Zhang, H. & Song, D., A Novel Surface Plasmon Resonance Biosensor Based on Graphene Oxide Decorated with Gold Nanorod?Antibody Conjugates for Determination of Transferrin, Biosensors and Bioelectronics, 45, pp. 230-236, 2013.
Loh, K.P., Bao, Q., Eda, G. & Chhowalla, M., Graphene Oxide as a Chemically Tunable Platform for Optical Applications, Nature Chemistry, 2(12), pp. 1015-1024, 2010.
Jana, D., Matti, C., He, J. & Sagle, L., Capping Agent-Free Gold Nanostars Show Greatly Increased Versatility and Sensitivity for Biosensing, Analytical Chemistry, 87(7), pp. 3964-3972, 2015.
Rahman, M.S. & Abdulrazak, L.F., Utilization of a Phosphorene-Graphene/TMDC Heterostructure in a Surface Plasmon Resonance-Based Fiber Optic Biosensor, Photonics and Nanostructures-Fundamentals and Applications, 35, 100711, 2019.
Pal, S., Verma, A., Raikwar, S., Prajapati, Y.K. & Saini, J.P., Detection of DNA Hybridization Using Graphene-Coated Black Phosphorus Surface Plasmon Resonance Sensor, Applied Physics A, 124, pp. 1-11, 2018.
Hu, W., He, G., Zhang, H., Wu, X., Li, J., Zhao, Z., Qiao, Y., Lu, Z., Liu, Y. & Li, C. M., Polydopamine-functionalization of Graphene Oxide to Enable Dual Signal Amplification for Sensitive Surface Plasmon Resonance Imaging Detection of Biomarker, Analytical Chemistry, 86(9), pp. 4488-4493, 2014.
Sadrolhosseini, A. R., Shafie, S., Rashid, S. A., & Mahdi, M. A., Surface Plasmon Resonance Measurement of Arsenic in Low Concentration Using Polypyrrole-Graphene Quantum Dots Layer, Measurement, 173, 108546, 2021.
Singh, M., Holzinger, M., Tabrizian, M., Winters, S., Berner, N.C., Cosnier, S. & Duesberg, G.S., Noncovalently Functionalized Monolayer Graphene for Sensitivity Enhancement of Surface Plasmon Resonance Immunosensors, Journal of the American Chemical Society, 137(8), pp. 2800-2803, 2015.
Primo, E.N., Kogan, M.J., Verdejo, H.E., Bollo, S., Rubianes, M.D. & Rivas, G.A., Label-free Graphene Oxide-Based Surface Plasmon Resonance Immunosensor for The Quantification of Galectin-3, A Novel Cardiac Biomarker, ACS Applied Materials & Interfaces, 10(28), pp. 23501-23508, 2018.
Lee, H., Dellatore, S.M., Miller, W.M. & Messersmith, P.B., Mussel-inspired Surface Chemistry for Multifunctional Coatings, Science, 318(5849), pp. 426-430, 2007.
Tan, F., Cong, L., Li, X., Zhao, Q., Zhao, H., Quan, X. & Chen, J., An Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole/Graphene Quantum Dots Composite for Detection of Bisphenol a in Water Samples, Sensors and Actuators B: Chemical, 233, pp. 599-606, 2016.
Zhou, X., Ma, P., Wang, A., Yu, C., Qian, T., Wu, S. & Shen, J., Dopamine Fluorescent Sensors Based on Polypyrrole/Graphene Quantum Dots Core/Shell Hybrids, Biosensors and Bioelectronics, 64, pp. 404-410, 2015.
Sadrolhosseini, A.R., Rashid, S.A., Jamaludin, N., Noor, A.S.M. & Isloor, A.M., Surface Plasmon Resonance Sensor Using Polypyrrole-Chitosan/Graphene Quantum Dots Layer for Detection of Sugar, Materials Research Express, 6(7), 075028, 2019.
Almawgani, A.H., Taya, S.A., Abutailkh, M.A., Abohassan, K.M., Hindi, A.T., Colak, I., Pal, A. & Patel, S. K., Development of a Biosensor Based on a Surface Plasmon Resonance Structure Comprising Strontium Titanate, Graphene and Affinity Layers for Malaria Diagnosis, Modern Physics Letters B, 2350190, 2023.
Anas, N.A.A., Fen, Y.W., Yusof, N.A., Omar, N.A.S., Daniyal, W.M.E.M.M. & Ramdzan, N.S.M., Highly Sensitive Surface Plasmon Resonance Optical Detection of Ferric Ion Using CTAB/Hydroxylated Graphene Quantum Dots Thin Film, Journal of Applied Physics, 128(8), 2020.
Zhang, H., Chhowalla, M. & Liu, Z., 2D Nanomaterials: Graphene and Transition Metal Dichalcogenides, Chemical Society Reviews, 47(9), pp. 3015-3017, 2018.
Wang, M., Huo, Y., Jiang, S., Zhang, C., Yang, C., Ning, T., Liu, X., Liu, C., Zhang, W. & Man, B., Theoretical Design of a Surface Plasmon Resonance Sensor with High Sensitivity and High Resolution Based on Graphene?WS 2 Hybrid Nanostructures and Au?Ag Bimetallic Film, RSC Advances, 7(75), pp. 47177-47182, 2017.
Zadeh, S.Z., Keshavarz, A. & Zamani, N., Performance Enhancement of Surface Plasmon Resonance Biosensors Based on Noble Metals-Graphene-WS2 at Visible and Near-Infrared Wavelengths, Plasmonics, 15(2), pp. 309-317, 2020.
Rouf, H.K. & Haque, T., Sensitivity Enhancement of Graphene-MoSe2?Based SPR Sensor Using Ti Adhesion Layer for Detecting Biological Analytes, Plasmonics, 16(6), pp. 1945-1954, 2021.
Homola, J., Surface Plasmon Resonance Sensors for Detection of Chemical And Biological Species, Chemical Reviews, 108(2), pp. 462-493, 2008.
Verma, R., Gupta, B.D. & Jha, R., Sensitivity Enhancement of a Surface Plasmon Resonance Based Biomolecules Sensor Using Graphene and Silicon Layers, Sensors and Actuators B: Chemical, 160(1), pp. 623-631, 2011.
Ouyang, Q., Zeng, S., Jiang, L., Hong, L., Xu, G., Dinh, X.Q., Qian, J., He, S., Qu, J., Coquet, P. & Yong, K.T., Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-Based Surface Plasmon Resonance Biosensor, Scientific Reports, 6(1), 28190, 2016.
Xu, Y., Ang, Y.S., Wu, L. & Ang, L.K., High Sensitivity Surface Plasmon Resonance Sensor Based on Two-Dimensional MXene and Transition Metal Dichalcogenide: A Theoretical Study, Nanomaterials, 9(2), 165, 2019.
?ar, H., den, A., Demiro?lu, ?., Sevik, C., Perkgoz, N.K. & Ay, F., Long?Term Stability Control of CVD?Grown Monolayer MoS2, Physica Status Solidi (RRL)?Rapid Research Letters, 13(7), 1800687, 2019.
Wu, D., Shi, J., Zheng, X., Liu, J., Dou, W., Gao, Y., Yuan, X., Ouyang, F. & Huang, H., CVD Grown MoS2 Nanoribbons on MoS2 Covered Sapphire (0001) without Catalysts, Physica Status Solidi (RRL)?Rapid Research Letters, 13(7), 1900063, 2019.
Xiang, M., Liu, H., Huang, C., Li, Y., Zeng, H. & Shao, X., Mo Doping Assisting the CVD Synthesis of Size-Controlled, Uniformly Distributed Single-Layer Mos2 on Rutile TiO2 (110), ACS Applied Materials & Interfaces, 12(30), pp. 34378-34387, 2020.
Liu, H., Chen, L., Zhu, H., Sun, Q. Q., Ding, S. J., Zhou, P. & Zhang, D. W., Atomic Layer Deposited 2D MoS 2 Atomic Crystals: From Material to Circuit, Nano Research, 13, pp. 1644-1650, 2020.
Shen, C., Raza, M. H., Amsalem, P., Schultz, T., Koch, N. & Pinna, N., Morphology-controlled MoS 2 by Low-Temperature Atomic Layer Deposition, Nanoscale, 12(39), pp. 20404-20412, 2020.
Yang, J. & Liu, L., Nanotribological Properties of 2-D MoS2 on Different Substrates Made By Atomic Layer Deposition (ALD), Applied Surface Science, 502, 144402, 2020.
Ghidiu, M., Halim, J., Kota, S., Bish, D., Gogotsi, Y. & Barsoum, M. W., Ion-exchange and Cation Solvation Reactions in Ti3C2 MXene, Chemistry of Materials, 28(10), pp. 3507-3514, 2016.
Golub, A.S., Zubavichus, Y.V., Slovokhotov, Y.L. & Novikov, Y.N., Monolayer Dispersions of Transition-Metal Dichalcogenides in the Synthesis of Intercalation Compounds, Usp. Khim, 172(2), pp. 138-158, 2003.
Benavente, E., Santa Ana, M.A., Mendizal, F. & Gonzez, G., Intercalation Chemistry of Molybdenum Disulfide, Coordination Chemistry Reviews, 224(1-2), pp. 87-109, 2002.
Liu, K., Zhang, J., Jiang, J., Xu, T., Wang, S., Chang, P., Zhang, Z., Ma, J. & Liu, T., Multi-layer Optical Fiber Surface Plasmon Resonance Biosensor Based on a Sandwich Structure of Polydopamine-MoSe 2@ Au nanoparticles-polydopamine, Biomedical Optics Express, 11(12), pp. 6840-6851, 2020.
Jia, Q., Huang, X., Wang, G., Diao, J. & Jiang, P., MoS2 Nanosheet Superstructures Based Polymer Composites for High-Dielectric and Electrical Energy Storage Applications, The Journal of Physical Chemistry C, 120(19), pp. 10206-10214, 2016.
Kim, N. H., Choi, M., Kim, T.W., Choi, W., Park, S.Y. & Byun, K. M., Sensitivity and Stability Enhancement of Surface Plasmon Resonance Biosensors Based on a Large-Area Ag/Mos2 Substrate, Sensors, 19(8), 1894, 2019.
YoungChung, D., Chulam, H. & Jongoo, S., Edge-exposed MoS2 Nano-Assembled Structures as Efficient Electrocatalysts for Hydrogen Evolution Reaction, Nanoscale, 6(4), pp. 2131-2136, 2014.
Zhang, D., Jiang, C., Li, P. & Sun, Y. E., Layer-by-layer Self-assembly of Co3O4 Nanorod-Decorated MoS2 Nanosheet-Based Nanocomposite toward High-Performance Ammonia Detection, ACS Applied Materials & Interfaces, 9(7), pp. 6462-6471, 2017.
Filbrun, S.L., Filbrun, A.B., Lovato, F.L., Oh, S.H., Driskell, E.A. & Driskell, J.D., Chemical Modification of Antibodies Enables the Formation of Stable Antibody?Gold Nanoparticle Conjugates for Biosensing, Analyst, 142(23), pp. 4456-4467, 2017.
Kaushik, S., Tiwari, U.K., Pal, S.S., & Sinha, R.K., Rapid Detection of Escherichia Coli Using Fiber Optic Surface Plasmon Resonance Immunosensor Based on Biofunctionalized Molybdenum Disulfide (MoS2) Nanosheets, Biosensors and Bioelectronics, 126, pp. 501-509, 2019.
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A., Ultrasensitive Photodetectors based on Monolayer MoS2, Nature Nanotechnology, 8(7), pp. 497-501, 2013.
Zhang, Y., Wang, L., Zhang, N. & Zhou, Z., Adsorptive Environmental Applications of MXene Nanomaterials: A Review, RSC Advances, 8(36), pp. 19895-19905, 2018.
Sang, X., Xie, Y., Lin, M.W., Alhabeb, M., Van Aken, K.L., Gogotsi, Y., Kent, P.R.C., Xiao, K. & Unocic, R.R., Atomic Defects in Monolayer Titanium Carbide (Ti3C2T x) MXene, ACS Nano, 10(10), pp. 9193-9200, 2016.
Lipatov, A., Alhabeb, M., Lukatskaya, M.R., Boson, A., Gogotsi, Y. & Sinitskii, A., Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes, Advanced Electronic Materials, 2(12), 1600255, 2016.
Khazaei, M., Ranjbar, A., Ghorbani-Asl, M., Arai, M., Sasaki, T., Liang, Y. & Yunoki, S., Nearly Free Electron States in MXenes, Physical Review B, 93(20), 205125, 2016.
Peng, Q., Guo, J., Zhang, Q., Xiang, J., Liu, B., Zhou, A., Liu, R. & Tian, Y., Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide, Journal of the American Chemical Society, 136(11), pp. 4113-4116, 2014.
Urbankowski, P., Anasori, B., Makaryan, T., Er, D., Kota, S., Walsh, P.L., Zhao, M., Shenoy, V.B., Barsoum, M.W. & Gogotsi, Y., Synthesis of Two-dimensional Titanium Nitride Ti 4 N 3 (MXene), Nanoscale, 8(22), pp. 11385-11391, 2016.
Anasori, B., Lukatskaya, M.R. & Gogotsi, Y., 2D Metal Carbides and Nitrides (MXenes) for Energy Storage, Nature Reviews Materials, 2(2), pp. 1-17, 2017.
Wu, L., You, Q., Shan, Y., Gan, S., Zhao, Y., Dai, X. & Xiang, Y., Few-layer Ti3C2Tx MXene: A Promising Surface Plasmon Resonance Biosensing Material to Enhance the Sensitivity, Sensors and Actuators B: Chemical, 277, pp. 210-215, 2018.
Gan, S., Ruan, B., Xiang, Y. & Dai, X., Highly Sensitive Surface Plasmon Resonance Sensor Modified with 2D Ti?C MXene for Solution Detection, IEEE Sensors Journal, 21(1), pp. 347-352, 2020.
Luo, S., Patole, S., Anwer, S., Li, B., Delclos, T., Gogotsi, O., Zahorodna V., Balitskyi V. & Liao, K., Tensile Behaviors of Ti3C2Tx (MXene) Films, Nanotechnology, 31(39), 395704, 2020.
Srivastava, A., Verma, A., Das, R. & Prajapati, Y.K., A Theoretical Approach to Improve the Performance of SPR Biosensor using MXene and Black Phosphorus, Optik, 203, 163430, 2020.
Kumar, R., Pal, S., Pal, N., Mishra, V. & Prajapati, Y.K., High-Performance Bimetallic Surface Plasmon Resonance Biochemical Sensor using a Black Phosphorus?MXene Hybrid Structure, Applied Physics A, 127(4), 259, 2021.
Srivastava, A. & Prajapati, Y.K., Surface Plasmon Resonance (SPR)-Based Biosensor Using MXene as a BRE Layer and Magnesium Oxide (MgO) as an Adhesion Layer, Journal of Materials Science: Materials in Electronics, 33, pp. 8519-8528, 2022.
Kumar, R., Pal, S., Prajapati, Y.K. & Saini, J.P., Sensitivity Enhancement of MXene Based SPR Sensor Using Silicon: Theoretical Analysis, Silicon, 13, pp. 1887-1894, 2021.
Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tomek, D. & Ye, P.D., Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility, ACS Nano, 8(4), pp. 4033-4041, 2014.
Cho, S. Y., Lee, Y., Koh, H. J., Jung, H., Kim, J. S., Yoo, H.W., Kim, J. & Jung, H. T., Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS2 and Graphene, Advanced Materials, 28(32), pp. 7020-7028, 2016.
Wu, L., Guo, J., Wang, Q., Lu, S., Dai, X., Xiang, Y. & Fan, D., Sensitivity Enhancement by Using Few-Layer Black Phosphorus-Graphene/TMDCs Heterostructure in Surface Plasmon Resonance Biochemical Sensor, Sensors and Actuators B: Chemical, 249, pp. 542-548, 2017.
Pal, S., Verma, A., Saini, J.P. & Prajapati, Y.K., Sensitivity Enhancement Using Silicon?Black Phosphorus?TDMC Coated Surface Plasmon Resonance Biosensor, IET Optoelectronics, 13(4), pp. 196-201, 2019.
Hakami, J., Abassi, A. & Dhibi, A., Performance Enhancement of Surface Plasmon Resonance Sensor Based on Ag-Tio2-Mapbx3-Graphene for the Detection of Glucose in Water, Optical and Quantum Electronics, 53(4), 164, 2021.
Polavarapu, L., Nickel, B., Feldmann, J. & Urban, A.S., Advances in Quantum?Confined Perovskite Nanocrystals for Optoelectronics, Advanced Energy Materials, 7(16), 1700267, 2017.
Jagielski, J., Kumar, S., Yu, W.Y. & Shih, C.J., Layer-Controlled Two-Dimensional Perovskites: Synthesis and Optoelectronics, Journal of Materials Chemistry C, 5(23), pp. 5610-5627, 2017.
Hong, K., Van Le, Q., Kim, S.Y. & Jang, H.W., Low-Dimensional Halide Perovskites: Review and Issues, Journal of Materials Chemistry C, 6(9), pp. 2189-2209, 2018.
Chen, S. & Shi, G., Two?Dimensional Materials for Halide Perovskite?Based Optoelectronic Devices, Advanced Materials, 29(24), 1605448, 2017.
Zhao, Y., Gan, S., Wu, L., Zhu, J., Xiang, Y. & Dai, X., GeSe Nanosheets Modified Surface Plasmon Resonance Sensors for Enhancing Sensitivity, Nanophotonics, 9(2), pp. 327-336, 2020.
Miah, M.A.R. & Shaikh, A.A., WS 2-CH 3 NH 3 PbI 3 Perovskite Nanostructure Based Bimetallic Surface Plasmon Resonance Biosensor with High Sensitivity and High Resolution, in 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 234-237, 2019.
Srivastava, A., Das, R. & Prajapati, Y.K., Effect of Perovskite Material on Performance of Surface Plasmon Resonance Biosensor, IET Optoelectronics, 14(5), pp. 256-265, 2020.
Khan, A.F., Brownson, D.A., Randviir, E.P., Smith, G.C. & Banks, C.E., 2D Hexagonal Boron Nitride (2D-Hbn) Explored for the Electrochemical Sensing of Dopamine, Analytical Chemistry, 88(19), pp. 9729-9737, 2016.
Yola, M.L. & Atar, N., Gold Nanoparticles/Two-Dimensional (2D) Hexagonal Boron Nitride Nanosheets Including Diethylstilbestrol Imprinted Polymer: Electrochemical Detection in Urine Samples and Validation, Journal of The Electrochemical Society, 165(14), H897, 2018.
kan, A., Atar, N. & Yola, M.L., Enhanced Surface Plasmon Resonance (SPR) Signals Based on Immobilization of Core-Shell Nanoparticles Incorporated Boron Nitride Nanosheets: Development of Molecularly Imprinted SPR Nanosensor for Anticancer Drug, Etoposide, Biosensors and Bioelectronics, 130, pp. 293-298, 2019.