Thermodynamic Property Model of Wide-Fluid Phase Propane
DOI:
https://doi.org/10.5614/itbj.eng.sci.2007.39.1.4Abstract
A new thermodynamic property model for propane is expressed in form of the Helmholtz free energy function. It consists of eight terms of the ideal-gas part and eighteen terms of the residual part. Accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered in the development to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures. Based on the state range of experimental data used in the model development, the validity range is judged from the triple-point of 85.48 K to temperature of 450 K and pressure up to 60 MPa. The uncertainties with respect to different properties are estimated to be within 0.03% in ideal-gas isobaric specific heat, 0.2% in liquid phase density, 0.3% in gaseous phase density 1% in specific heats, 0.1% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% in speed of sound of the gaseous phase and 1% in speed of sound of the liquid phase.Downloads
References
Miyamoto, H., & Watanabe, K., A Thermodynamic Property Model for Fluid-Phase Propane, Int. J. Thermophysics, 21(5), 1046-1072, 2000.
http://dx.doi.org/10.1023/A:1026441903474
Younglove, B. A., & Ely, J. F., Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Phys. Chem. Ref. Data, 16, 577-798, 1987.
Span, R., & Wagner, W., Equations of State for Technical Applications. II. Results for Nonpolar Fluids, Int. J. Thermophysics, 24(1), 41-109, 2003.
http://dx.doi.org/10.1023/A:1022310214958
http://dx.doi.org/10.1023/A:1022362231796
http://dx.doi.org/10.1023/A:1022390430888
Lemmon, E. W., McClinden, M. O., & Huber, M. L., REFPROP, Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Ver. 7.0., NIST, U.S. Dept. Commerce, Washington D.C., 2002.
McLinden, M. O., Klein, S. A., Lemmon, E. W., & Peskin, A. P., NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures (REFPROP), Ver. 6.01., NIST, U.S. Dept. Commerce, Washington D.C., 1998.
http://dx.doi.org/10.2172/674625
PMid:9525592 PMCid:PMC109717
Astina, I M., & Sato, H., A Rational Helmholtz, Fundamental Equation of State for Difluoromethane with an Intermolecular Potential Background, Int. J. Thermophysics, 24(4), 963-990, 2003.
http://dx.doi.org/10.1023/A:1025096716493
Kitajima, H., Kagawa, N., Tsuruno, S., Magee, J. W., & Watanabe, K., Isochoric Heat Capacities of Propane + Isobutane Mixtures at Temperatures from 280 K to 420 K and Pressures to 30 MPa, Fifteenth Symposium on Thermophysical Properties on Colorado, USA, 2003.
Kayukawa, Y., A Study of Thermodynamic Properties for Novel Refrigerants with Rapid and Precise Density Measurement, Ph.D. Dissertation, Keio University, Japan, 2002.
Glos, S., Kleinrahm, R., & Wagner, W., Measurement of the (p, ρ, T) Relation of Propane, Propylene, n-Butane, and Isobutane in the Temperature Range from (95 to 340) K at Pressure up to 12 MPa Using an Accurate Two-sinker Densimeter, J. Chem. Thermodyn., 36, 1037-1059, 2004.
http://dx.doi.org/10.1016/j.jct.2004.07.017
Thomas, R. H. P., & Harrison, R. H., Pressure-Volume-Temperature Relations of Propane, J. Chem. Eng. Data, 27(1), 1-11, 1982.
http://dx.doi.org/10.1021/je00027a001
Goodwin, R. D., & Haynes, H. M., Thermophysical Properties of Propane from 85 to 700 K at pressures to 70 MPa, NBS Monograph, 170, U.S. Department of Commerce, Washington DC, 1982.
Mohr, P. J. & Taylor, B. N., CODATA Recommended Values of the Fundamental Physical Constants: 1998, J. Phys. Chem. Ref. Data, 28, 1713-1852, 1999.
http://dx.doi.org/10.1063/1.556049
Coplen, T. B., Atomic Weights of the Elements 1995, J. Phys. Chem. Ref. Data, 26, 1239-1253, 1997.
http://dx.doi.org/10.1063/1.556001
Astina, I M., Development of Fundamental Equation of State for Thermodynamics Properties of HFC Refrigerants, Ph.D. Dissertation, Keio University, 2003.
Astina, I M., & Sato, H., Implementation of Simultaneous Cybernetic Optimization on Thermodynamic Modeling, Jurnal Teknik Mesin Indonesia, 1(2), 51-60, 2006.
Chao, J., Wilhoit, R. C. & Zwolinski, B. J., Ideal Gas Thermodynamic Properties of Ethane and Propane, J. Phys. Chem., 2, 427-435, 1973.
Dailey, B. P., & Felsing, W. A., Heat Capacities of and Hindered Rotation in n-Butane and Isobutane, J. Am. Chem. Soc., 65, 44-46, 1943.
http://dx.doi.org/10.1021/ja01241a014
http://dx.doi.org/10.1021/ja01241a013
Sage, B. H., Webster, D. C., & Lacey, W. N., Phase Equilibrium in Hydrocarbon Systems, XX Isobaric Heat Capacity of Gaseous Propane, n-Butane, Isobutane, and n-Pentane, Ind. Eng. Chem., 29, 1309-1314, 1937.
Reamer, H. H., Sage, B. H., & Lacey, W. N., Volumetric Behavior of Propane, Ind. Eng. Chem., 41, 482-485, 1949.
http://dx.doi.org/10.1021/ie50471a012
Helgeson, N. L., & Sage, B. H., Latent Heat of Vaporization of Propane, J. Chem. Eng. Data, 12(1), 47-49, 1967.
http://dx.doi.org/10.1021/je60032a015
McClune, C. R., Measurement of the Densities of Liquefied Hydrocarbons from 93 to 173 K, Cryogenics, 16(5), 289-295, 1976.
http://dx.doi.org/10.1016/0011-2275(76)90320-9
Orrit, J. E., & Laupretre, J. M., Density of Liquefied Natural Gas Components, Adv. Cryog. Eng., 23, 573-579, 1978.
http://dx.doi.org/10.1007/978-1-4613-4039-3_71
Ely, J. F. & Kobayashi, R., Isochoric Pressure-Volume-Temperature Measurements for Compressed Liquid Propane, J. Chem. Eng. Data, 23(3), 221-223, 1978.
http://dx.doi.org/10.1021/je60078a004
Haynes, W. M. & Hiza, M. J., Measurement of the Orthobaric Liquid Densities of Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Chem. Thermodyn., 9, 179-187, 1977.
http://dx.doi.org/10.1016/0021-9614(77)90083-0
Carruth, G. F., & Kobayashi, R., Vapor Pressure of Normal Parrafine Ethane Through n-Decane from Their Triple Points to about 10 mm Hg, J. Chem. Eng. Data, 18(2), 115-126, 1973.
http://dx.doi.org/10.1021/je60057a009
Kemp, J. D., & Egan, C. J., Hindered Rotation of the Methyl Groups in Propane. The Heat Capacity, Vapor Pressure, Heats of Fusion and Vaporization of Propane, J. Am. Chem. Soc., 60(7), 1521-1525, 1938.
http://dx.doi.org/10.1021/ja01274a001
Straty, G. C., & Palavra, A. M. F., Automated High Temperature PVT Apparatus with Data for Propane, J. Res. Natl. Bur. Stand, 89(5), 375-383, 1984.
http://dx.doi.org/10.6028/jres.089.021
Goodwin, R. D., Specific Heats of Saturated and Compressed Liquid Propane, J. Res. Natl. Bur. Stand., 83(5), 449-458, 1978.
http://dx.doi.org/10.6028/jres.083.031
Ernst, G., & Busser, J., Ideal and Real Gas State Heat Capacities cp of C3H8, i-C4H10, C2F5Cl, CH2ClCF3, CF2ClCFCl2, and CHF2Cl, J. Chem. Thermodyn., 2, 787-791, 1970.
http://dx.doi.org/10.1016/0021-9614(70)90020-0
Trusler, J. P. M., & Zarari, M. P., The Speed of Sound in Gaseous Propane at Temperatures between 225 K and 375 K and at Pressures up to 0.8 MPa. J. Chem. Thermodyn., 28, 329-335, 1996.
http://dx.doi.org/10.1006/jcht.1996.0032
Niepmann, R., Thermodynamic Properties of Propane and n-butane. 2. Speeds of Sounds in the Liquid up to 60 MPa, J. Chem. Thermodyn., 16, 851-860, 1984.
http://dx.doi.org/10.1016/0021-9614(84)90032-6
http://dx.doi.org/10.1016/0021-9614(84)90062-4
Lacam, A., Experimental Study of the Propagation of Ultrasonics in Fluids as a Function of Pressure and Temperature, J. Research Centre Natl. Research Sci. Lab. Bellevue, 34, 25-31, 1956.
Younglove, B. A., Velocity of Sound in Liquid Propane, J. Res. Natl. Bur. Stand., 86(2), 165-170, 1981.
http://dx.doi.org/10.6028/jres.086.005
Kratzke, H., Thermodynamics Quantities for Propane, J. Chem. Thermodyn., 12, 305-309, 1980.
http://dx.doi.org/10.1016/0021-9614(80)90142-1
Dittmer, P., Schulz, F., & Stresse, G., Druck/Dichte/Temperatur-Werte fur Propan und Propylen, Chemie-Ing Tech, 34(6), 437-441, 1962.
http://dx.doi.org/10.1002/cite.330340608
Orrit, J. E., & Laupetre, J. M., Density of Liquified Natural Gas Component, Adv. Cryogenics Eng., 23, 573-579, 1978.
http://dx.doi.org/10.1007/978-1-4613-4039-3_71
McClune, C. R., Measurement of the Densities of Liquified Hydrocarbons from 93 to 173 K, Cryogenics, 16(5), 289-295, 1976.
http://dx.doi.org/10.1016/0011-2275(76)90320-9
Span, R., & Wagner, W., On the Extrapolation Behavior of Empirical Equations of State, Int. J. Thermophys., 18(6), 1415-1443, 1997.