Borehole Microseismic Imaging of Hydraulic Fracturing: A Pilot Study on a Coal Bed Methane Reservoir in Indonesia


  • Rexha Verdhora Ry Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No 10, Bandung 40132,
  • Tepy Septyana BP Indonesia, Jalan Letjen TB Simatupang Kav 88, Jakarta, Indonesia,
  • Sri Widiyantoro Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No 10, Bandung 40132,
  • Andri Dian Nugraha Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No 10, Bandung 40132,
  • Arii Ardjuna SKK Migas, Jalan Gatot Subroto Kav 42, Jakarta, Indonesia,



downhole receivers, fracture stimulation, induced seismicity, microseismic, CBM, unconventional hydrocarbon


Over the last decade, microseismic monitoring has emerged as a considerable and capable technology for imaging stimulated hydraulic fractures in the development of unconventional hydrocarbon resources. In this study, pilot hydraulic-fracturing treatments were operated at a coal-bed methane (CBM) field in Indonesia to stimulate the flow and increase the reservoir's permeability while the monitoring system was set in a single near-vertical borehole. Locating event sources accurately is fundamental to investigating the induced fractures, but the geometry of a single downhole array is a challenging data processing task, especially to remove ambiguity of the source locations. The locating procedure was reviewed in 3 main steps: (i) accurate picking of P- and S-wave phases; (ii) inclusion of P-wave particle motion to estimate the back azimuth; (iii) guided inversion for hypocenter determination. Furthermore, the seismic-source moment magnitudes were calculated by employing Brune's model. Reliable solutions of locations were obtained as shown statistically by uncertainty ellipsoids and a small misfit. Based on our results, both induced and triggered seismicity could be observed during the treatments and therefore conducting intensive monitoring is important. The triggered seismicity is an undesired activity so disaster precautions need to be taken, in particular for preventing reactivation of pre-existing faults.


Download data is not yet available.


Maxwell, S.C., Microseismic Imaging of Hydraulic Fracturing: Improved Engineering of Unconventional Shale Reservoirs, SEG Distinguished Instructor Series, (17), 2014. DOI:10.1190/1.9781560803164.

Stimac, J., Nordquist, G., Suminar, A. & Sirad-Azwar, L., An Overview of the Awibengkok Geothermal System, Indonesia, Geothermics, 37, pp. 300-331, 2008.

Akbar, A.F., Nugraha, A.D., Sule, R. & Juanda, A.A., Hypocenter Determination Using Simulated Annealing, Updated 1D Seismic Velocity Model, and Focal Mechanism Analysis, AIP Conf. Proc., 1554, pp. 285-289, 2013.

Nugraha, A.D, Syahputra, A., Fatkhan & Sule, R., Seismic Velocity and Attenuation Structures in the Geothermal Field, AIP. Conf. Proc., 1554, pp. 238-241, 2013. DOI:10.1063/1.4820329.

Hasanah, M.U., Nugraha, A.D. & Sule, R., Attenuation Tomography Using MEQ Data in the A Geothermal Field, AIP. Conf. Proc., 1554, pp. 273-276, 2013. DOI:10.1063/1.4820338.

Ry, R.V. & Nugraha, A.D., Reservoir Characterization around Geothermal Field, West Java, Indonesia Derived from 4-D Seismic Tomography, IOP Conf. Series: EES, 29(1), 2016. DOI:10.1088/1755-1315/29/1/012001

Fattah, E.I., Nugraha, A.D. & Sule, R., An Integrated Method 3D Velocity Model and Fuzzy Clustering for Fracture Characterization, IOP Conf. Series: EES, 62, 2017. doi:10.1088/1755-1315/62/1/012026.

Rohaman, M., Suhendi, C., Ry, R.V., Prabowo, B.S., Widiyantoro, S., Nugraha, A.D., Yudistira, T. & Mujihardi, B., The Preliminary Results of Gmstech: A Software Development for Microseismic Characterization, IOP Conf. Series: EES, 62, 2017. DOI:10.1088/1755-1315/62/1/012024.

Palgunadi, K.H., Nugraha A.D., Sule, R. & Meidiana, T., Steam and Brine Zone Prediction Around Geothermal Reservoir Derived from Delay Time Seismic Tomography and Anisotropy Case Study: "PR" Geothermal Field, IOP Conf. Series: EES, 62, 2017. DOI:10.1088/1755-1315/62/1/012027.

Geiger, L., Probability Method for The Determination of Earthquake Epicenters from Arrival Time Only, Bull. St. Louis. Univ., 8, pp. 60-71, 1912.

Lienert, B.R., Berg, E. & Frazer, L.N., Hypocenter: An Earthquake Location Method Using Centered Scaled and Adaptively Damped Least Squares, Bull. Seism. Soc. Am., 76(3), pp. 771-783, 1986.

Nelson, G.D. & Vidale J.E., Earthquake Locations by 3-D Finite Difference Travel Times, Bull. Seism. Soc. A M., 80(2), pp. 395-410, 1990.

Lomax, A., Zollo, A., Capuano, P. & Vireux J., Precise, Absolute Earthquake Location under Sommaevesuvius Volcano Using a New Three-Dimensional Velocity Model, Geophys. J. Int., 146(2), pp. 313-331, 2001.

Ry, R.V. & Nugraha A.D., Improve Earthquake Hypocenter Using Adaptive Simulated Annealing Inversion in Regional Tectonic, Volcano-Tectonic, and Geothermal Observation, AIP. Proc. Conf., 1658, 2015. DOI:10.1063/1.4915012

Pavlis, G.L., Appraising Earthquake Hypocenter Location Errors: A Complete, Practical Approach for Single-Event Locations, Bull. Seism. Soc. A M., 76(6), pp. 1699-1717, 1986.

Alessandrini, B., Cattaneo, M., Demartin, M., Gasperini, M. & Lanza, V., A Simple P-Wave Polarization Analysis: Its Application to Earthquake Location, Annali di Geofisica, 37, 1994.

Moriya, H., Precise Arrival Time Detection of Polarized Seismic Waves Using the Spectral Matrix, Geophysical Prospecting, 56, pp. 667-676, 2008.

De Meersman, K., Kendall J.M. & van der Baan M., The 1998 Valhallmicroseismic Data Set: An Integrated Study of Relocated Sources, Seismic Multiplets, and S-Wave Splitting, Geophysics, 74(5), pp. B183-B195, 2009.

Maxwell, S.C., Rutledge, J., Jones, R. & Fehler, M., Petroleum Reservoir Characterization Using Downhole Microseismic Monitoring, Geophysics, 75(5), pp. 129-137, 2010.

Jones, G.A., Raymer, D., Chambers, K. & Kendall, J.M., Improved Microseismic Event Location by Inclusion of a Priori Dip Particle Motion: A Case Study from Ekofisk, Geophysical Prospecting, 58(5), pp. 727-737, 2010.

Jones, G.A., Kendall, J.M., Bastow I.D. & Raymer D., Locating Microseismic Events Using Borehole Data, Geophysical Prospecting, 62, pp. 34-49, 2013.

Havskov, J. & Ottemller L., Routine Data Processing in Earthquake Seismology: With Sample Data, Exercises and Software, Springer, 2010. DOI:10.1007/978-90-481-8697-6.

Ry, R.V., Septyana, T., Widiyantoro, S., Nugraha, A.D. & Ardjuna, A., Improved Location of Microseismic Events in Borehole Monitoring by Inclusion of Particle Motion Analysis: A Case Study at A CBM Field in Indonesia, IOP Conf. Series: EES, 62, 2017. DOI:10.1088/1755-1315/62/1/012025

Brune, J., Tectonic Stress and the Spectra of Shear Waves from Earthquakes, Journal of Geophysical Research, 75(26), pp. 4997-5009, 1970.

Rodriguez-Pradilla, G., Microseismic Monitoring of a Hydraulic-Fracturing Operation in A CBM Reservoir: Case Study in The Cerrejon Formation, Cesar-Ranchera Basin, Colombia, The Leading Edge, 34(8), pp. 896-902, 2015. DOI:10.1190/tle34080896.1.

McClay, K., Dooley, T., Ferguson, A. & Poblet, J., Tectonic Evolution of the Sanga Sanga Block, Mahakam Delta, Kalimantan, Indonesia, AAPG Bulletin, 84(6), pp. 765-786, 2000.

Earle, P.S. & Shearer, P.M., Characterization of Global Seismograms Using an Automated Picking Algorithm, Bulletin of the Seismological Society of America, 84, pp. 366- 376, 1994.

Rowe, C., Aster, R., Phillips, W., Jones, R., Borchers, B. & Fehler M., Using Automated, High-Precision Repicking to Improve Delineation of Microseismic Structures at the Soultz Geothermal Reservoir, Pure and Applied Geophysics, 159, pp. 563-596, 2002.

Sharma, B.K., Kumar A. & Murthy, V.M., Evaluation of Seismic Event-Detection Algorithms, Journal Geological Society of India, 75, pp. 533-538, 2010. DOI:10.1007/s12594-010-0042-8.

Akram, J. & Eaton, D.W., A Review and Appraisal of Arrival-time Picking Methods for Downhole Microseismic Data, Geophysics, 81, pp. Ks71-Ks91, 2016. DOI:/10.1190/Geo2014-500.1.

de Meersman, K., van der Baan, M. & Kendall, J.M., Signal Extraction and Automated Polarization Analysis of Multicomponent Ray Data, Bull. Seism. Soc. A M., 96, pp. 2415-2430, 2006.

Zhou, H.W., Rapid Three-Dimensional Hypocentral Determination Using a Master Station Method, Journal of Geophysical Research, 99(B8), pp. 15439-15455, 1994.

Mukuhira, Y., Asanuma, H., Niitsuma, H., Haring, M. & Deichmann, N., Estimation of Source Parameter of Microseismic Events with Large Magnitude Collected at Basel, Switzerland in 2006, Geothermal Resources Council Transactions, 34, pp. 407-412, 2010.

Boore, D.M. & Boatwright, J., Average Body-wave Radiation Coeffi-cients, Bull. Seism. Soc. A M., 74, pp. 1615-1621, 1984.




How to Cite

Ry, R. V., Septyana, T., Widiyantoro, S., Nugraha, A. D., & Ardjuna, A. (2019). Borehole Microseismic Imaging of Hydraulic Fracturing: A Pilot Study on a Coal Bed Methane Reservoir in Indonesia. Journal of Engineering and Technological Sciences, 51(2), 251-271.