Analytical Approach to Parameter Determination in Kaiser Function for Power-weighted Antenna Array Design

Authors

  • Hartuti Mistialustina Department of Electrical Engineering, Faculty of Engineering, Universitas Sangga Buana, Jalan PH. H. Mustofa No. 68, Bandung 40124, Indonesia
  • Chairunnisa Chairunnisa Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia
  • Achmad Munir Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/itbj.ict.res.appl.2023.17.1.8

Keywords:

antenna array, Kaiser function, power weighting, radiation pattern, sidelobe level (SLL), width of main lobe (WML)

Abstract

Window methods that are frequently used in the design of finite impulse response filters are also applicable to antenna array designs. This paper explores the application of a Kaiser function in a power-weighted antenna array design, focusing on the determination of the Kaiser function?s ? parameter. The determination, which includes the calculation, optimization, and validation of the ? parameter, was carried out based on a specific configuration of a linear antenna array design. The observation of this exploration emphasized the suppression of the sidelobe level (SLL) and the width of main lobe (WML) performance. By changing the ? parameter, the Kaiser function is capable of approximating different window methods, since it plays an important role in defining the set of weighting coefficients for a specifically targeted SLL. Kaiser function application in power-weighted antenna array designs with a linear arrangement indicates the need of ? parameter optimization because of the disagreement between the obtained SLL and the targeted SLL. The optimized ? parameter produced a smaller SLL error for even and odd numbers of elements. From the validation, the average SLL error percentage for a targeted SLL of 25 dB, 35 dB, and 45 dB was 6%, 4.31%, 6.10%, respectively.

Downloads

Download data is not yet available.

References

Cheng, D.K., Optimization Techniques for Antenna Arrays, Proceedings of the IEEE, 59(12), pp. 1664-1674, 1971.

Shaped Beam X-band Radar Antenna Model RP40X10-93-90F, https://vdocuments.mx/shaped-beam-x-band-radar-antenna-model-shaped-beam-x-band-radar-antenna-model.html, (Oct. 2013)

Vaisala Weather Radar WRM100 Technical Data, https://www.vaisala.com/sites/default/files/documents/WRM100-Datasheet-B210697EN-F.pdf, (Dec 2017).

Balakrishnan, N. & Sethuraman, R., Easy Generation of Dolph-Chebyshev Excitation Coefficients, Proceedings of the IEEE, 69(11), pp. 1508-1509, 1981.

Bevelacqua, P.J., Antenna Arrays: Performance Limits and Geometry Optimization, Ph. D. Dissertation, The Graduate College, Arizona State University, Arizona, 2008.

Saputra, Y.P., Oktafiani, F., Wahyu, Y. & Munir, A., Side Lobe Suppression for X-Band Array Antenna Using Dolph-Chebyshev Power Distribution, 22nd Asia-Pacific Conference on Communications, pp. 86-89, 2016.

Harris, F.J., On the Use of Windows with the Discrete for Harmonic Analysis Fourier Transform, Proceedings of the IEEE, 66(1), pp. 51-83, 1978.

Nuttall, A.H., Some Windows with Very Good Sidelobe Behavior, IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(1), pp. 84-91, 1981.

Sarker, Md.R., Islam, Md.M., Alam, Md.T. & Hossam-E-Haider, M., Side Lobe Level Reduction in Antenna Array Using Weighting Function, International Conference on Electrical Engineering and Information & Communication Technology, pp. 1-5, 2014.

Taylor, M.L., Virga, K.L., Yaccarino, R.G., Comparison of Antenna Transmit Weighting Functions for Active Arrays, IEEE Antennas and Propagation Society International Symposium, pp. 2302-2305, 1999.

Jaskula, M., Fast Change of Windows Properties, IEEE International Instrumentation and Measurement Technology Conference, pp. 1043-1046, 2006.

MVSR, T., Kumar, A. & Prasanth, C.V.S., Comparative Analysis of Windowing Techniques in Minimizing Side Lobes in an Antenna Array, IEEE International Conference on Communications and Signal Processing, pp. 1380-1383, 2014.

Mistialustina, H., Chairunnisa & Munir, A., Performance Analysis of Power Weighted Linear Array Antennas Based on Blackman Function, 41th Photonics & Electromagnetics Research Symposium, pp 4132-4137, 2019.

Mistialustina, H., Chairunnisa & Munir, A., Flexibility of Kaiser Function on Power Weighted Linear Array Antennas, 2020 Asia-Pacific Microwave Conference, pp 1-4, 2020.

Tumakov, D.N., Abgaryan, G.V., Chickrin, D.E. & Kokunin, P.A., Modeling of the Koch-Type Wire Dipole, Applied Mathematical Modelling, 51, pp. 341-360, 2017.

Li, Z., Yiu, K.F.C. & Dai, Y.H., On Sparse Beamformer Design with Reverberation, Applied Mathematical Modelling, 58, pp. 98-110, 2018.

Chairunnisa, Mistialustina, H., Irawan, B. & Munir, A., Analytical Comparison of Blackman and Kaiser Functions for Power Weighted Linear Array Antennas with Small Number of Elements, 2020 International Workshop on Antenna Technology, pp. 1-4, 2020.

Kaiser, J.F., Nonrecursive Digital Filter Design Using the I0-Sinh Window Function, IEEE International Symposium on Circuits and Systems, pp. 20-23, 1974.

Kraus, J.D. & Marhefka, R.J., Antennas for All Applications, Third ed., McGraw-Hill, pp. 128-138, 2015.

Collin, R. E., Antennas & Radiowave Propagation, Mc Graw-Hill, pp. 121-133, 1985.

Munir, A., Saputra, Y.P., Kurniawan, F. & Sri Sumantyo, J.T., Linearly Polarized Slotted Patch Antenna Array Fed by Power Weighting Distribution, IEEE International Symposium on Antennas and Propagation, pp. 2093-2094, 2017.

Ginting, O. S., Chairunnisa & Munir, A., Proximity-Coupled L-Band Patch Array Antenna Fed by Binomial Power Distribution, IEEE Asia-Pacific Microwave Conference, pp. 554-557, 2017.

Balanis, C.A., Antenna Theory, Third ed., John Wiley & Sons, 2005.

Milligan, T., Modern Antenna Design, Second ed., Hoboken, New Jersey, John Wiley & Sons, Inc., 2005.

Pranathi, G.V.P., Rani, D.N.D., Rao, G.T., Devi, D.P.V S., A Koch Multiband Fractal Array Using Kaiser Window Technique, 13th International Conference on Electromagnetic Interference and Compatibility, pp. 135-137, 2015.

Oppenheim, A.V. & Schafer, R.W., Discrete-Time Signal Processing, Second ed., Prentice-Hall, 1999.

Safaai-Jazi, A., A New Formulation for the Design of Chebyshev Arrays, IEEE Transaction on Antennas and Propagation, 42(3), pp. 439-443, 1994.

Mistialustina, H., Chairunnisa, Effendi, M.R. & Munir, A., Radiation Characteristic of Chebyshev Function-Based Power Weighted Linear Array Antennas Influenced by Element Configuration, International Conference on Antenna Measurements and Applications, pp. 595-596, 2019.

Lasdon, L.S., Fox, R.L. & Ratner, M.W., Nonlinear Optimization using The Generalized Reduced Gradient, French Review of Automatic Control, Computer Science, Operational research, 8(V3), pp. 73-103, 1974.

Rudd, K., Foderaro, G., Zhu, P. & Ferrari, S., A Generalized Reduced Gradient Method for the Optimal Control of Very-Large-Scale Robotic Systems, IEEE Transaction on Robotics, 33(5), pp. 1226-1232, 2017.

Downloads

Published

2023-04-30

How to Cite

Mistialustina, H., Chairunnisa, C., & Munir, A. (2023). Analytical Approach to Parameter Determination in Kaiser Function for Power-weighted Antenna Array Design. Journal of ICT Research and Applications, 17(1), 114-133. https://doi.org/10.5614/itbj.ict.res.appl.2023.17.1.8

Issue

Section

Articles