Bandwidth Optimization of Spline-Based Planar Sensor Using GA, PSO, and CMA-ES for EMC Testing and Wireless Communications

Authors

  • Agus Dwi Prasetyo School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesa no. 10, Bandung
  • Deny Hamdani School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesa no. 10, Bandung
  • Achmad Munir School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jalan Ganesa no. 10, Bandung

DOI:

https://doi.org/10.5614/itbj.ict.res.appl.2025.19.1.5

Keywords:

bandwidth optimization, covariance matrix adaptation?evolution strategy (CMA-ES), electromagnetic compatibility (EMC), genetic algorithm (GA), particle swarm optimization (PSO), planar sensor, wireless communication

Abstract

The expansion of communication technology and the increasing usage of the frequency spectrum drive the need for compatible device testing. Wideband antennas play a crucial role in supporting modern communication systems and applications, including those used as the sensors in electromagnetic compatibility (EMC) testing. Optimization techniques, such as genetic algorithm (GA), particle swarm optimization (PSO), and covariance matrix adaptation?evolution strategy (CMA-ES), are widely applied to enhance the bandwidth of electromagnetic devices. However, most studies focus on individual algorithms or limited comparisons, resulting in a lack of systematic evaluation within a unified framework. This paper fills that gap by directly comparing GA, PSO, and CMA-ES on the same planar sensor design, assessing their effectiveness in achieving the widest bandwidth. The planar sensor had a basic spline-based configuration using quadratic Bezier equation. A performance comparison based on a simulation showed that the planar sensor configuration with the best bandwidth was 17.77 GHz, spanning a frequency range from 2.23 GHz to 20 GHz, which was limited by the highest observation frequency of the available measuring instrument. Furthermore, verification of the realized planar sensor showed that the bandwidth reached 17.86 GHz, from 2.14 GHz to 20 GHz, with a geometric bandwidth of 273%.

Downloads

Download data is not yet available.

References

Guan, K., Keusgen, W., Fan, W., Briso, C., & Sun, B., Guest Editorial: Antennas and Propagation at Millimetre, Sub-Millimetre Wave and Terahertz Bands, IET Microwaves, Antennas & Propagation, 17(6), pp. 415-418, May 2023, DOI:10.1049/mia2.12374.

Yeo, J. & Lee, J.-I., Compact Wideband Tapered Slot Antenna Using Fan-Shaped and Stepped Structures for Chipless Radio-Frequency-Identification Sensor Tag Applications, Sensors, 24(12), 3835, June 2024, DOI: 10.3390/s24123835.

Jacobs, B., Odendaal, J. W., & Joubert, J., Wideband 0.5?50 GHz Double-Ridged Guide Horn Antenna Using Coaxial-to-Ridge Waveguide Launcher, IET Microwaves, Antennas & Propagation, 18(4), pp. 248?265, Dec. 2023, DOI: 10.1049/mia2.12441.

Lu, Z., Chen, Y., & Xue, Y., Overview of Key Techniques for In Situ Tests of Electromagnetic Radiation Emission Characteristics, Sensors, 24(23), 7515, Nov. 2024, DOI: 10.3390/s24237515.

Prasetyo, A. D., Hamdani, D., & Munir, A., A Wideband Spearhead-Shaped Patch Antenna Evolved from Spline-Based Oval Geometry as Sensor in EMC/EMI Measurement, IEEE 7th Global Electromagnetic Compatibility Conference (GEMCCON), pp. 64?64, 2023, DOI: 10.1109/GEMCCON57842.2023.10078207.

Chen, H., Liang, X., Yuan, W., Sun, L., He, M., & Ji, N., Root System Growth for Global Optimization, IEEE International Conference on Information and Automation, pp. 2098?2103, Aug. 2015, DOI: 10.1109/ICInfA.2015.7279634.

Dejen, A., Jayasinghe, J., Ridwan, M., & Anguera, J., Synthesis of Quadband mm-Wave Microstrip Antenna Using Genetic Algorithm for Wireless Application, Technologies, 11(1), 14, Jan. 2023, DOI: 10.3390/technologies11010014.

Ramamohan, B. & Siva Ganga Prasad, M., Advanced Design and Analysis of Dual Element MIMO Antenna for Ultra-wideband Applications, International Journal of Electronics and Telecommunications, 70(4), pp. 987?995, 2024, DOI: 10.24425/ijet.2024.152086.

Zou, H., Zeng, S., Li, C., & Ji, J., A Survey of Machine Learning and Evolutionary Computation for Antenna Modeling and Optimization: Methods and Challenges, Engineering Applications of Artificial Intelligence, 138(Part B), 109381, Dec. 2024, DOI: 10.1016/j.engappai.2024.109381.

Koziel, S. & Pietrenko-Dabrowska, A., On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models, Scientific Reports, 13, 8373, May 2023, DOI: 10.1038/s41598-023-35470-4.

Chishti, A. R., Abbasi, M. N., Abbasi, D., Khan, M. U. A., Masud, M. J., & Aziz, A., E-Shaped Antenna Sensor Optimization with Improved Bandwidth Using Genetic Algorithm for Biomedical Applications, IEEE International Conference on Emerging Trends in Engineering, Sciences and Technology (ICES&T), pp. 1?6, Jan. 2023, DOI: 10.1109/ICEST56843.2023.10138806.

Dubovitskiy, M. A. & Mikhailov, M. S., Non-Periodic and Conformal Antenna Arrays Design Using Parallel Evolutionary Algorithm Based on GA and PSO, Photonics & Electromagnetics Research Symposium (PIERS), pp. 1079?1085, Apr. 2022, DOI: 10.1109/PIERS55526.2022.9792763.

Elabd, R. H. & Al-Gburi, A. J. A., Design and Optimization of A Circular Ring-Shaped UWB Fractal Antenna for Wireless Multi-Band Applications Using Particle Swarm Optimization, Progress in Electromagnetics Research B, 106, pp. 101?112, June 2024, DOI: 10.2528/PIERB24033002.

Kolangiammal, S., Balaji, L., & Mahdal, M., A Compact planar monopole UWB MIMO Antenna for Short-Range Indoor Applications, Sensors, 23(9), 4225, Apr. 2023, DOI: 10.3390/s23094225.

Gregory, M. D., Martin, S. V., & Werner, D. H., A Comparison of CMA-ES with Other Real-Coded Strategies Used in Electromagnetics Design, IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 1962?1963, Jul. 2014, DOI: 10.1109/APS.2014.6905308.

Gorman, P. J., Gregory, M. D., & Werner, D. H., Design of Ultra-Wideband, Aperiodic Antenna Arrays with The CMA Evolutionary Strategy, IEEE Transactions on Antennas and Propagation, 62(4), pp. 1663?1672, Apr. 2014, DOI: 10.1109/TAP.2013.2287904.

Bekasiewicz, A., Kurgan, P., & Koziel, S., Numerically Efficient Miniaturization-Oriented Optimization of An Ultra-Wideband Spline-Parameterized Antenna, IEEE Access, 10, pp. 21608?21618, Feb. 2022, DOI: 10.1109/ACCESS.2022.3152736.

John, M. & Ammann, M. J., Spline Based Geometry for Printed UWB Antenna Design, IEEE Antennas and Propagation Society International Symposium, pp. 761?764, June 2007, DOI: 10.1109/APS.2007.4395605.

Prasetyo, A. D., Yunita, T., Hamdani, D., & Munir, A., Control Points Rearrangement of Spline-Based CPW-Fed Spearhead Monopole Antenna Using Particle Swarm Optimizer, Photonics & Electromagnetics Research Symposium (PIERS), pp. 1?5, Apr. 2024, DOI: 10.1109/PIERS62282.2024.10618653.

Lizzi, L., Viani, F., Azaro, R., & Massa, A., Optimization of A Spline-Shaped UWB Antenna by PSO, IEEE Antennas and Wireless Propagation Letters, 6, pp. 182?185, Dec. 2007, DOI: 10.1109/LAWP.2007.894157.

Prasetyo, A. D. & Munir, A., CMA-ES-driven optimization on Spline-Based Patch Geometry of Wideband Planar Monopole Antenna, IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), pp. 106?106, Oct. 2023, DOI: 10.1109/APWC57320.2023.10297463.

Downloads

Published

2025-11-21

How to Cite

Prasetyo, A. D., Hamdani, D., & Munir, A. (2025). Bandwidth Optimization of Spline-Based Planar Sensor Using GA, PSO, and CMA-ES for EMC Testing and Wireless Communications. Journal of ICT Research and Applications, 19(1), 86-104. https://doi.org/10.5614/itbj.ict.res.appl.2025.19.1.5

Issue

Section

Articles

Most read articles by the same author(s)