saLFIA: Semi-automatic Live Feeds Image Annotation Tool for Vehicle Classification Dataset

Authors

  • Umi Chasanah Research Center for Artificial Intelligence and Cyber Security, National Research and Innovation Agency, Jalan Cisitu Sangkuriang, Bandung 40135
  • Gilang Putra Research Center for Artificial Intelligence and Cyber Security, National Research and Innovation Agency, Jalan Cisitu Sangkuriang, Bandung 40135
  • Sahid Bismantoko Research Center for Computing, National Research and Innovation Agency, Jalan Raya Jakarta - Bogor KM 46 Cibinong 16911
  • Sofwan Hidayat Research Center for Transportation Technology, National Research and Innovation Agency, Kawasan PUSPIPTEK, Tangerang Selatan 15314
  • Tri Widodo Research Center for Transportation Technology, National Research and Innovation Agency, Kawasan PUSPIPTEK, Tangerang Selatan 15314
  • Mohammad Rosyidi Research Center for Computing, National Research and Innovation Agency, Jalan Raya Jakarta - Bogor KM 46 Cibinong 16911

DOI:

https://doi.org/10.5614/itbj.ict.res.appl.2023.18.2.5

Keywords:

annotation tool, CCTV, dataset, vehicle classification, YOLO, SSD

Abstract

Deep learning?s reliance on abundant data with accurate annotations presents a significant drawback, as developing datasets is often time-consuming and costly for specific problems. To address this drawback, we propose a semi-automatic live-feed image annotation tool called saLFIA. Our case study utilized CCTV data from Indonesia?s toll roads as one of the sources for live-feed images. The primary contribution of saLFIA is a labeling tool designed to generate new datasets from public source images, focusing on vehicle classification using YOLOv3 and SSD algorithms. The evaluation results indicated that SSD achieved higher accuracy with fewer initial images, while YOLOv3 reached maximum accuracy with larger initial datasets, resulting in 8 misdetections out of 380 objects. The saLFIA tool simplifies the annotation process, presenting a labeling tool for creating annotated datasets in a single operation. saLFIA is available at URL https://github.com/gilangmantara/salfia.

Downloads

Download data is not yet available.

References

Kroener, I., CCTV: A Technology Under the Radar?, Contemp. Sociol. J. Rev., 44(3), pp. 436-436, May, 2015. DOI: 10.1177/0094306115579192b.

Sedky, M.H., Moniri, M. & Chibelushi, C.C., Classification of Smart Video Surveillance Systems for Commercial Applications, in Proceedings. IEEE Conference on Advanced Video and Signal Based Surveillance, 2005, Como, Italy, IEEE, pp. 638-643, 2005. DOI: 10.1109/AVSS.2005.1577343.

The Directorate General of Highways, CCTV TOL - Indonesia, 2022. https://binamarga.pu.go.id/index.php/contents/cctv (Sep. 14, 2022)

Bommes, M., Fazekas, A., Volkenhoff, T. & Oeser, M., Video based Intelligent Transportation Systems ? State of the Art and Future Development, Transp. Res. Procedia, 14, pp. 4495-4504, 2016. DOI: 10.1016/j.trpro.2016.05.372.

Buch, N., Velastin, S.A. & Orwell, J., A Review of Computer Vision Techniques for the Analysis of Urban Traffic, IEEE Trans. Intell. Transp. Syst., 12(3), pp. 920-939, Sep. 2011. DOI: 10.1109/TITS.2011.2119372.

Boukerche, A., Siddiqui, A.J. & Mammeri, A., Automated Vehicle Detection and Classification: Models, Methods, and Techniques, ACM Comput. Surv., 50(5), pp. 1-39, Sep. 2018. DOI: 10.1145/3107614.

Sasongko, A.T. & Ivan Fanany, M., Indonesia Toll Road Vehicle Classification using Transfer Learning with Pre-trained Resnet Models, in 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia: IEEE, pp. 373-378. Dec. 2019. DOI: 10.1109/ISRITI48646.2019.9034590.

Prior, F., Almeida J., Kathiravelu P., Kurch T., Smith K., Fitzgerald T.J., & Saltz J., Open Access Image Repositories: High-quality Data to Enable Machine Learning Research, Clin. Radiol, 75(1), pp. 7-12, Jan. 2020. DOI: 10.1016/j.crad.2019.04.002.

Bhagat, P.K. & Choudhary, P., Image Annotation: Then and Now, Image Vis. Comput, 80, pp. 1-23, Dec. 2018. DOI: 10.1016/j.imavis.2018.09.017.

Cheng, Q., Zhang, Q., Fu, P., Tu, C. & Li, S., A Survey and Analysis on Automatic Image Annotation, Pattern Recognit, 79, pp. 242-259, Jul. 2018. DOI: 10.1016/j.patcog.2018.02.017.

Dong, Z., Wu, Y., Pei, M. & Jia, Y., Vehicle Type Classification using a Semisupervised Convolutional Neural Network, IEEE Trans. Intell. Transp. Syst., 16(4), pp. 2247-2256, Aug. 2015. DOI: 10.1109/TITS.2015.2402438.

Luo, Z., Branchaud-Charron F., Lemaire C., Konrad J., Li S., Mishra A., Achkar A., Eichel J. & Jodoin P.-M., MIO-TCD: A New Benchmark Dataset for Vehicle Classification and Localization, IEEE Trans. Image Process, 27(10), pp. 5129-5141, Oct. 2018. DOI: 10.1109/TIP.2018.2848705.

Sasongko, A.T., Jati, G., Fanany, M.I. & Jatmiko, W., Dataset of Vehicle Images for Indonesia Toll Road Tariff Classification, Data Brief, 32, 106061, Oct. 2020. DOI: 10.1016/j.dib.2020.106061.

Mulyanto, A., Jatmiko, W., Mursanto, P., Prasetyawan, P. & Borman, R.I., A New Indonesian Traffic Obstacle Dataset and Performance Evaluation of YOLOv4 for ADAS, J. ICT Res. Appl., 14(3), pp. 286-298, Mar. 2021. DOI: 10.5614/itbj.ict.res.appl.2021.14.3.6.

Tzutalin, LabelImg, 2015. MIT license, Git code. https://github.com/tzutalin/labelImg (Nov. 22, 2022)

Russell, B.C., Torralba, A., Murphy, K.P. & Freeman, W.T., Label Me: A Database and Web-based Tool for Image Annotation, Int. J. Comput. Vis., 77(1?3), pp. 157-173, May, 2008. DOI: 10.1007/s11263-007-0090-8.

Natural Intelligence, imglab, Git code. https://github.com/NaturalIntelligence/imglab (Oct. 16, 2022)

Jer, J., Reus, G., Denzler, J., Wolff, V. & Fricke-Neuderth, K., LOST: A Flexible Framework for Semi-automatic Image Annotation, 2019. DOI: 10.48550/ARXIV.1910.07486.

Bianco, S., Ciocca, G., Napoletano, P. & Schettini, R., An Interactive Tool for Manual, Semi-automaticand Automatic Video Annotation, Comput. Vis. Image Underst, 131, pp. 88-99, Feb. 2015. DOI: 10.1016/j.cviu.2014.06.015.

Brooks, J., COCO Annotator, 2019. MIT license, Git code. https://github.com/jsbroks/coco-annotator/ (9 Oct. 14, 2022)

CVAT.ai, Computer Vision Annotation Tool. (2022). CVAT.ai Corporation, Git code. https://github.com/cvat-ai/cvat?tab=readme-ov-file (July 14, 2024)

Liu, W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., & Berg A.C., SSD: Single Shot MultiBox Detector, 2015. DOI: 10.48550/ARXIV.1512.02325.

Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollar, P. Focal Loss for Dense Object Detection, IEEE Trans. Pattern Anal. Mach. Intell, 42(2), pp. 318-327, Feb. 2020. DOI: 10.1109/TPAMI.2018.2858826.

J. Redmon, S. Divvala, R. Girshick, & Farhadi, A., You only Look once: Unified, Real-time Object Detection, 2015. DOI: 10.48550/ARXIV.1506.02640.

Wang, H., Yu, Yi., Cai, Y., Chen, X., Chen, L. & Liu, Q., A Comparative Study of State-of-the-art Deep Learning Algorithms for Vehicle Detection, IEEE Intell. Transp. Syst. Mag., 11(2), pp. 82-95, 2019. DOI: 10.1109/MITS.2019.2903518.

Downloads

Published

2024-10-21

How to Cite

Chasanah, U., Putra, G., Bismantoko, S., Hidayat, S., Widodo, T., & Rosyidi, M. (2024). saLFIA: Semi-automatic Live Feeds Image Annotation Tool for Vehicle Classification Dataset. Journal of ICT Research and Applications, 18(2), 143-154. https://doi.org/10.5614/itbj.ict.res.appl.2023.18.2.5

Issue

Section

Articles