Quality Analysis of Telemetry Tracking and Command at Ground Stations using the Association Rule Mining Approach
DOI:
https://doi.org/10.5614/itbj.ict.res.appl.2023.17.3.3Keywords:
associate rule mining, azimuth, elevation, ground station, satellite, telemetry tracking and commandAbstract
LAPAN built several remote ground stations to support the telemetry tracking and command (TTC) system for the LAPAN-A2 and LAPAN-A3 satellites. These remote ground stations are located in Kototabang/KT (West Sumatra), Biak/BK (Papua), Parepare/PR (South Sulawesi), Rumpin/RP, Rancabungur/RB (Bogor, West Java), and Svalbard/SV (Norway). Problems that often arise in the TTC process are telecommands not being sent (commands sent from the ground station to the satellite) or telemetry packages not being received (feedback on telecommands sent by the satellite to the ground station). This research attempted to calculate and analyze the quality of TTC using a data-mining approach, i.e., rule mining. The calculations were performed using five main parameters: satellite name, ground station, azimuth, altitude, and communication status. The research output consisted of a combination of remote ground station parameters that may result in a successful or failed TTC. For the LAPAN-A3 satellite at the Svalbard ground station, 19 failed communication combinations were generated with a dataset of 57,029. Communication failures occur in azimuth and elevation, i.e., areas blocked by obstacles.
Downloads
References
Hakim, P.R., Atmospheric Refraction Distortion Model on LAPAN-A2 and LAPAN-A3 Satellite Image LAPAN A3 Satellite, JURNAL TEKGAN, 2015, Available: https://www.researchgate.net/publication/326112961, (08 January 2024).
Madina, R., Qadir, A.A. & Utama, S., Determination of the LAPAN-A2 Satellite Orbit, Media Dirgantara, pp. 33-38, 2015.
Kushardono, D., Wirawan, R., Zylshal, Zubaidi, M. & Mukhayadi, M., LAPAN A3 LISA Technology and Image Utilization, Inderaja, pp. 23-29, Nov. 2017.
Udaniya, P.K., Sharma, G. & Tharani, L., Application of MIMO System for Telemetry, Tracking Command and Monitoring Subsystem to Control the Satellite, in 2016 International Conference on Computing, Communication and Automation (ICCCA), IEEE, pp.1560-1562, Apr. 2016. DOI: 10.1109/CCAA.2016.7813971.
Hoots, F.R. & Roehrich, R.L., Spacetrack Report No. 3 Models for Propagation of NORAD Element Sets, 1980.
Abdelghafar, S., Darwish, A. & Hassanien, A.E., Intelligent Health Monitoring Systems for Space Missions based on Data Mining Techniques, in Machine Learning and Data Mining in Aerospace Technology. Studies in Computational Intelligence, 836, Springer, pp. 65-78, 2020. DOI: 10.1007/978-3-030-20212-5_4.
Triharjanto, R. H., Hasbi, W., Widipaminto, A., Mukhayadi, M., & Renner, U. LAPAN-TUBSAT: Micro-Satellite Platform for Surveillance & Remote Sensing, Nov. 2004. Available: https://www.researchgate.net/publication/228734133, (15 December 2023).
Permala, R., Technical Document TR.6-2019.12-01, Bogor, Dec, 2019.
Akula, V.S.R.P., Goyal, K.K., Verma, O.P. & Sharma, N., Low-Cost Azimuth and Elevation Antenna Rotator for LEO Satellite Tracking, Mater Today Proc, 63, pp. 56-61, Jan. 2022. DOI: 10.1016/j.matpr.2022.02.292.
Rubio, P. & Alvarez, J., Antenna Precise Pointing Calibration using Low Cost DGPS, Nov, 2018. available: http://hdl.handle.net/10150/631604, (15 December 2023).
Bethel, R., The Importance of Antenna Calibration, EE-Evaluation Engineering, 47(12), pp. 44-48, Dec. 2008. Available: https://link.gale.com/apps/doc/A190340970/AONE?u=googlescholar&sid=bookmark-AONE&xid=7448889f, (15 December 2023).
Nugroho, M. & Khamsah, N.M.N., Study on Impact of Outdated Two-Line Element Sets in Tracking of LAPAN-A2 and LAPAN-A3 Satellites, in IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), IEEE, pp. 1-6, 2018. DOI: 10.1109/ICARES.2018.8547116.
Schez-Ortiz, N., Domguez-Gonzez, R., Krag, H. & Flohrer, T., Impact on Mission Design Due to Collision Avoidance Operations based on TLE or CSM Information, Acta Astronaut, 116, pp. 368-381, Nov. 2015. DOI: 10.1016/J.ACTAASTRO.2015.04.017.
Cakaj, S., Kamo, B., Koli, V. & Shurdi, O., The Range and Horizon Plane Simulation for Ground Stations of Low Earth Orbiting (LEO) Satellites, International Journal of Communications, Network and System Sciences, 4(9), pp. 585-589, 2011. DOI: 10.4236/ijcns.2011.49070.
Lian, S., Gao, J. & Li, H., A Method of Mining Association Rules for Geographical Points of Interest, ISPRS Int J Geoinf, 7(4), Apr. 2018. DOI: 10.3390/ijgi7040146.
Hu, K., Qiu, L., Zhang, S., Wang, Z. & Fang, N., An Animal Dynamic Migration Optimization Method for Directional Association Rule Mining, Expert Syst Appl., 211, Jan. 2023. DOI: 10.1016/j.eswa.2022.118617.
Antonello, F., Baraldi, P., Shokry, A., Zio, E., Gentile, U. & Serio, L., A Novel Association Rule Mining Method for the Identification of Rare Functional Dependencies in Complex Technical Infrastructures from Alarm Data, Expert Syst Appl., 170, May 2021. DOI: 10.1016/j.eswa.2021.114560.
Huang, Q., Liu, X., Wu, J., Liang, M., Hu, Z., Lu, Y., & Li, J. Application of Spatial Analysis Methods and Apriori Association Rule Algorithm in the Analysis of Spatial Distribution Characteristics of Traditional Villages in Anhui Province, in 2023 IEEE International Conference on Sensors, Electronics and Computer Engineering, ICSECE 2023, Institute of Electrical and Electronics Engineers Inc., pp. 332-340, 2023. DOI: 10.1109/ICSECE58870.2023.10263333.
Narindrarangkura, P., Alafaireet, P.E., Khan, U. & Kim, M.S., Association Rule Mining of Real-World Data: Uncovering Links between Race, Glycemic Control, Lipid Profiles and Suicide Attempts in Individuals with Diabetes, Inform Med Unlocked, 42, 101345, Jan. 2023. DOI: 10.1016/j.imu.2023.101345.
Mohammed, S., Rubarth, K., Piper, S. K., Schiefenhel, F., Freytag, J. C., Balzer, F. & Boie, S, A Statistical Method for Predicting Quantitative Variables in Association Rule Mining, Inf Syst, 118, Sep. 2023. DOI: 10.1016/j.is.2023.102253.
Li, F., Meng, C., Wang, C. & Fan, S. Equipment Quality Information Mining Method based on Improved Apriori Algorithm, Journal of Sensors, 2023. DOI: 10.1155/2023/2155590.
Shahin, M. Heidari Iman, M.R., Kaushik, M., Sharma, Ghasempouri, R.T. & Draheim, D., Exploring Factors in a Crossroad Dataset using Cluster-based Association Rule Mining, in Procedia Computer Science, Elsevier B.V., pp. 231-238, 2022. DOI: 10.1016/j.procs.2022.03.032.
Roza, W. & Amin, D.E., Performance Analysis of the LAPAN-A2/ORARI Satellite APRS Transmission and Receiver System Based on Spurious, Harmonic and EMC Testing in Satellite Technology Development in Indonesia: Systems, Subsystems and Operational Missions, IPB Press, Bogor, 2013.
de Bakker, P. F., Samson, J., Martin, H., de Bakker, P., Samson, J., Joosten, P., Spelat, M., Hollreiser, M., & Ambrosius, B. Effects of Radio Frequency Interference on GNSS Receiver Output, University of Technology, 2006. DOI: 10.13140/2.1.1355.7763.
Lazio, T.J.W., Radio-Astronomy Interferometry, Encyclopedia of Physical Science and Technology, pp. 675-686, 2002. doi: 10.1016/B0-12-227410-5/00638-4.
Merz, C.R., Liu, Y., Gurgel, K.W., Petersen, L. & Weisberg, R.H., Effect of Radio Frequency Interference (RFI) Noise Energy on WERA Performance using the ?Listen Before Talk? Adaptive Noise Procedure on the West Florida Shelf, Coastal Ocean Observing Systems, pp. 229-247, Jun. 2015. DOI: 10.1016/B978-0-12-802022-7.00013-4.
Cakaj, S., Malari?, K., & Scholtz, A.L., Modeling of Interference Caused by Uplink Signal for Low Earth Orbiting Satellite Ground Stations, Proceedings of the 17th IASTED International Conference Applied Simulation and Modelling (ASM), June 23, 2008. https://www.researchgate.net/publication/228997551_Modelling_of_interference_caused_by_uplink_signal_for_Low_Earth_Orbiting_satellite_ground_stations, (08 January 2024)
Cao, C. & Zhai, S., The Influence of LEO Satellite Doppler Effect on Lora Modulation and its Solutio, J Phys Conf Ser, 1883(1), 012071, Apr. 2021. DOI: 10.1088/1742-6596/1883/1/012071.
Mass, J. & Vassy, E., Doppler Effect of Artificial Satellites, 4, pp. 1-38, Jan. 1962. DOI: 10.1016/B978-1-4831-9962-7.50006-2.
Celestrak, Resource, https://celestrak.org/NORAD/elements/resource.txt, (08 January 2024).
Smiti, A., A Critical Overview of Outlier Detection Methods, Computer Science Review, 38, Elsevier Ireland Ltd., Nov 01, 2020. DOI: 10.1016/j.cosrev.2020.100306.
Gupta, S. & Gupta, A. Dealing with Noise Problem in Machine Learning Data-Sets: A Systematic Review, Procedia Comput Sci, 161, pp. 466-474, Jan. 2019. DOI: 10.1016/J.PROCS.2019.11.146.
Agrawal, R., Imieli?ski, T. & Swami, A., Mining Association Rules between Sets of Items in Large Databases, ACM SIGMOD Record, 22(2), pp. 207-216, Jun. 1993. DOI: 10.1145/170036.170072.
Agrawal, R., & Srikant, R., Fast Algorithms for Mining Association Rule, in Proceedings of the 20th International Conference on Very Large Data Bases, 1994.
Han, J., Kamber, M. & Pei, J., Data Mining: Concepts and Techniques, 3rd ed. Elsevier, 2012. DOI: 10.1016/C2009-0-61819-5.
Pradana M.R., Syafrullah, M., Irawan, Irawan, H. Chandra, J.C. & Solichin, A., Market Basket Analysis using FP-Growth Algorithm on Retail Sales Data, in 2022 9th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), IEEE, pp. 86-89, Oct. 2022. DOI: 10.23919/EECSI56542.2022.9946478.
Bayardo, R.J., Brute-Force Mining of High-Confidence Classification Rules, in Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, in KDD?97. AAAI Press, pp. 123-126, 1997.
Liu, B., Hsu, W. & Ma, Y., Integrating Classification and Association Rule Mining, in Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, in KDD?98. AAAI Press, pp. 80-86, 1998.
Hikmawati, E., Maulidevi, N.U. & Surendro, K., Minimum Threshold Determination Method based on Dataset Characteristics in Association Rule Mining, J Big Data, 8(1), 146, Dec. 2021. DOI: 10.1186/s40537-021-00538-3.
Hu, Y.H., & Chen, Y.L., Mining Association Rules with Multiple Minimum Supports: A New Mining Algorithm and a Support Tuning Mechanism, Decis Support Syst, 42(1), pp. 1-24, Oct. 2006. DOI: 10.1016/j.dss.2004.09.007.
Rumadi, R., Kamirul, K., Armin, F., Bissa, S.Y.CH. & Prasetya, S., Quantification of Physical Blockage based on Digital Surface Model (DSM) Dataset, in International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), IEEE, pp. 13-17, Nov. 2020. DOI: 10.1109/ICRAMET51080.2020.9298631.