A Study on Characteristics and Comparison of Evaporation Estimation Methods in Bandung


  • Rusmawan Suwarman Atmospheric Science Research Group, Faculty of Earth Science and Technology, Bandung Institute of Technology, Bandung, 40132, Indonesia
  • Novitasari Novitasari Department of Undergraduate Program of Meteorology, Faculty of Earth Science and Technology, Bandung Institute of Technology, Bandung, 40132, Indonesia
  • I Dewa Gede Agung Junnaedhi Atmospheric Science Research Group, Faculty of Earth Science and Technology, Bandung Institute of Technology, Bandung, 40132, Indonesia




CIMIS-Penman, estimation model, evaporation, observation, Schendel, Trabert, Turc


This study aims to understand the characteristic of evaporation and to evaluate the evaporation estimation methods to be employed in Bandung by using observation data at three different land cover characteristics sites, namely, densely vegetated area (Baleendah), densely built-up area (Ujung Berung), and mix of buildings and vegetation area (ITB). Observation data used are hourly evaporation, vapour pressure deficit, temperature, relative humidity, wind speed, and radiation. The analysis was done mostly by using statistical methods such as regression analysis and error comparison. The result shows the dominant weather factor affecting the evaporation in ITB and Ujung Berung is vapour pressure deficit, and in Baleendah is solar radiation. The methods of evaporation estimations used in this study are Trabert, Schendel, Turc, and CIMIS-Penman methods. The result shows that the original constant values of those methods are significantly correlated. However, the Schendel is found the most overestimated, and the second is Turc. The best estimated evaporation in Baleendah, ITB, and Ujung Berung is calculated using CIMIS-Penman with one hour lag of radiation, Trabert, and Calibrated Schendel, respectively. The improvement of constant value was applied to Schendel and the result is better than the original constants.


Dinpashoh, Y., Jhajaria, D., Fakheri Fard, A., Singh, V.P. & Ercan, K., Trends in Reference Crop Evapotranspiration over Iran, Journal of Hydrology, 399(3), pp. 422-433, 2011. DOI:10.1016/j.jhydrol. 2011.01.021

Xu, C-Y. & Singh, V.P., Dependence of Evaporation on Meteorological Variables at Different Timescales and Intercomparison of Estimation Methods, Hydrological Processes, 12, pp. 429-442, 1998.

Irmak, S., Irmak, A., Allen, R.G. & Jones, J.W., Solar and Net Radiation-based Equations to Estimate Reference Evapotranspiration in Humid Climates, Journal of Irrigation and Drainage Engineering, 129(5), pp. 336-347, 2003.

Verhoef, A. & Campbell, C.L., Hydrometeorology, Encyclopedia of Hydrological Sciences, M.G. Anderson, ed., Wiley Online Library, 2005.

Muhammad, M.K.I., Nashwan, M.S., Shahid, S., Ismail, T.B., Song, Y.H. & Chung, E-S., Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia, Sustainability, 11, pp. 4267, 2019. DOI:10.3390/su11164267

Subarna, D., Uji Kecenderungan Unsur-Unsur Iklim di Cekungan Bandung dengan Metode Mann-Kendall, 15(1), pp. 1-6, 2014.

Zuo, H.C., Chen, B.L., Wang, S.X., Guo, Y., Zuo, B., Wu, L.Y. &Gao. X. Q., Observational Study on Complementary Relationship between Pan Evaporation and Actual Evapotranspiration and Its Variation with Pan Type, Agricultural and Forest Meteorology, 222, pp. 1-9, 2016. DOI:10.1016/j.agrformet.2016.03.002

Agaton, M., Setiawan, Y. & Effendi H., Land Use/Land Cover Change Detection in An Urban Watershed: A Case Study of Upper Citarum Watershed, West Java Province, Indonesia, Elsevier Procedia Environ. Sci, 33, 2016. DOI:10.1016/j.proenv.2016.03.120

Allen, R.G., Pereira, L.S., Raes, D. & Smith, M., Crop Evapotranspiration, Guidelines for Computing Crop Water Requirements, FAO Irrig. Drain. Paper No. 56, 1998.

Gao, F., Feng, G., Ouyang, Y., Wang, H., Fisher, D., Adeli, A. & Jenkins, J., Evaluation of Reference Evapotranspiration Methods in Arid, Semiarid, and Humid Regions, Journal of the American Water Resources Association, 53(4), 2017.

Mendenhall, W. & Sincich, T., A Second Course in Business Statistics: Regression Analysis, Dellen Publishing Co., San Francisco, 1989.

Schendel, U., Vegetation Wasserverbrauch und Wasserbedarf. Habilitation, Kiel, 137, 1967.

Trabert, W., Neue Beobachtungen er Verdampfungs-geschwindigkeiten [New Observations on Evaporation Rates], Meteorologische Zeitschrift, 13, pp. 261-263, 1896.

Turc, L., Estimation of Irrigation Water Requirements, Potential Evapotranspiration: A Simple Climatic Formula Evolved Up to Date, Ann. Agronomy, 12, pp. 13-49, 1961.

Synder, R. & Pruitt, W.O., Estimating Reference Evapotranspiration with Hourly Data, VII-1-VII-3, California Irrigation Management Systems, Final Rep. R. Synder, D.W. Henderson, W.O., Pruitt, and A. Dong, eds., Univ. of California Davis, California, 1895.

Dingman S.L., Physical Hydrology, 2nd ed., Macmillan Publishing Co, New York, 1994.

Li, S., Kang, S.Z., Zhang, L., Zhang, J.H., Du, T.S., Tong, L. & Ding, R.S., Evaluation of Six Potential Evapotranspiration Models for Estimating Crop Potential and Actual Evapotranspiration in Arid Regions, J. Hydrol., 543, pp. 450-461, 2016. DOI:10.1016/j.jhydrol.2016.10.022

McMahon, T.A., Peel, M.C., Lowe, L., Srikanthan, R. & McVicar, T.R., Estimating Actual, Potential, Reference Crop and Pan Evaporation Using Standard Meteorological Data: A Pragmatic Synthesis, Hydrol. Earth Syst. Sc., 17(4), pp. 1331-1363, 2013.

Liu, B., Zhuguo, M., Jingjing, X. & Ziniu, X., Comparison of Pan Evaporation and Actual Evaporation Estimated by Land Surface Model in Xinjiang from 1960 to 2005, Journal of Geographical Sciences, 19, pp. 502-512, 2009. DOI:10.1007/s11442-009-0502-5

Xie, R. & Wang, A., Comparison of Ten Potential Evapotranspiration Models and Their Attribution Analysis for Ten Chinese Drainage Basins, Adv. Atmos. Sci., 37, pp. 959-974, 2020. DOI:10.1007/s00376-020-2105-0

Wei M. & Menzel, L., A Global Comparison of Four Potential Evapotranspiration Equations and Their Relevance to Stream Flow Modelling in Semi-arid Environments, Adv. Geosci., 18, pp. 15-23, 2008.

Han, S.J., Xu, D. & Wang, S.L., Decreasing Potential Evaporation Trends in China from 1956 to 2005: Accelerated in Regions with Significant Agricultural Influence?, Agricultural and Forest Meteorology, 154-155, pp. 44-56, 2012.

Zhou, M.C., Ishidaira, H., Hapuarachchi, H.P., Magome, J., Kiem, A.S. & Takeuchi, K., Estimating Potential Evapotranspiration Using Shuttleworth-Wallace Model and NOAA-AVHRR NDVI to Feed the Hydrological Modeling Over the Mekong River Basin, Journal of Hydrology, 327(1), pp. 151-173, 2006. DOI:10.1016/j.jhydrol.2005.11.013

Nash, J. & Sutcliffe, J., River Flow Forecasting Through Conceptual Models, Part I-A Discussion of Principles, J. Hydrol., 10, pp. 282-290, 1970.

Dubovsk V., Dlouh D. & Pospil, L., The Calibration of Evaporation Models Against the Penman-Monteith Equation on Lake Most, Sustainability, 13, pp. 313, 2021. DOI:10.3390/su13010313

Wati, T., Kajian Evaporasi Pulau Jawa dan Bali Berdasarkan Data Pengamatan 1975-2013, Thesis dissertation, Department of Geophysics and Meteorology, Institut Pertanian Bogor, Bogor, 2015.

Ramamurthy, P. & Bou-Zeid, E., Contribution of Impervious Surfaces to Urban Evaporation, Water Resour. Res., 50, pp. 2889-2902, 2014. doi:10.1002/2013WR013909

Tabari, H., Trajkovic, S. & Grismer, M.E., Comparative Analysis of 31 Reference Evapotranpiration Methods Under Humid Conditions, Irrigation Science, 31, 2011. DOI:10.1007/s00271-011-0295-z

Djaman, K., Balde, A.B., Sow, A., Muller, B., Irmak, S., N?Diaye, M.K., Manneh, B., Moukoumbi, Y.D., Futakuchi, K. & Saito, K., Evaluation of Sixteen Reference Evapotranspiration Methods Under Sahelian Conditions in the Senegal River Valley, Journal of Hydrology: Regional Studies, 3, pp. 139-159, 2015. DOI:10.1016/ j.ejrh.2015.02.002

Jensen M.E., Burman R.D. & Allen R.G., Evapotranspiration and Irrigation Water Requirements, ASCE Manuals and Reports on Engineering Practice, 70, pp. 332, 1990.

Shrivasta, S.K., Misra, S.K., Sahu, A. & Bose, D., Correlation Between Pan Evaporation and Climatic Parameters for Sunderbans ? A Case Study, Journal of the Institution of Engineers (India): Agricultural Engineering Division, 81(2), pp. 55-58, 2000.

Linsley, R., M.A., K. & J.L.H., P., Hydrogeology for Engineers, 3rd ed., New York, NY: McGraw-Hill Book Co, 1982.

Brutsaert, W., Evaporation into the Atmosphere: Theory, History, and Applications, Dordrecht, Holland: D. Reidel Publishing Company, 1982.

Alexandris, S. & Kerkides, P., New Empirical Formula for Hourly Estimations of Reference Evapotranspiration, Agricultural Water Management, Elsevier, 60(3), pp. 157-180, 2003.

Djaman, K., Koudahe, K., Sall, M., Kabenge, I., Rudnick, D. & Irmak, S., Performance of Twelve Mass Transfer Based Reference Evapotranspiration Models under Humid Climate, Journal of Water Resource and Protection, 9, pp. 1347-1363, 2017.

Zhou, S., Yu, B., Zhang, Y., Huang, Y. & Wang, G., Partitioning Evpotranspiration Based on the Concept of Underlying Water Use Efficiency, Water Resour. Res., 52, pp. 1160-1175, 2016. DOI:10.1002/2015WR017766

Cammalleri, C., Rallo, G., Agnese, C., Ciraolo, G., Minacapilli, M. & Provenzano, G., Combined Use of Eddy Covariance and Sap Flow Techniques for Partition of ET Fluxes and Water Stress Assessment in An Irrigated Olive Orchard, Agric. Water Manage., 120, pp. 89-97, 2013.

Good, S.P., Soderberg, K., Guan, K., King, E.G., Scanlon, T.M. & Caylor, K.K., D2H Isotopic Flux Partitioning of Evapotranspiration Over a Grass Field Following a Water Pulse and Subsequent Dry Down, Water Resour. Res., 50, pp. 1410-1432, 2014. DOI:10.1002/2013WR014333