On The Total Irregularity Strength of Regular Graphs
DOI:
https://doi.org/10.5614/j.math.fund.sci.2015.47.3.6Keywords:
cycle, dual labeling, path, prism, regular graph, the total irregularity strength, totally irregular total k-labeling.Abstract
Let 𝐺 = (?, 𝐸) be a graph. A total labeling ?: ? 𝐸 ? {1, 2, , ?} iscalled a totally irregular total ?-labeling of 𝐺 if every two distinct vertices and
in ? satisfy ?() ?() and every two distinct edges 12 and 12 in 𝐸
satisfy ?(12) ?(12), where ?() = ?() + Σ?𝐸(𝐺) ?() and
?(12) = ?(1) + ?(12) + ?(2). The minimum ? for which a graph 𝐺 has
a totally irregular total ?-labeling is called the total irregularity strength of 𝐺,
denoted by (𝐺). In this paper, we consider an upper bound on the total
irregularity strength of ? copies of a regular graph. Besides that, we give a dual labeling of a totally irregular total ?-labeling of a regular graph and we consider the total irregularity strength of ? copies of a path on two vertices, ? copies of a cycle, and ? copies of a prism 𝐶? ?2.
References
BaA a, M., JendroA, S., Miller, M. & Ryan, J., On Irregular Total Labeling, Discrete Math., 307, pp. 1378-1388, 2007.
Nurdin, Baskoro, E.T., Salman, A.N.M. & Gaos, N.N., On the Total Vertex Irregularity Strength of Trees, Discrete Math., 310, pp. 3043-3048, 2010.
Majerski, P. & Przybylo, J., Total Vertex Irregularity Strength of Dense Graphs, J. Graph Theory, 76(1), pp. 34-41, 2014.
Anholcer, M., Kalkowski, M. & Przybylo, J., A New Upper Bound for the Total Vertex Irregularity Strength of Graphs. Discrete Math., 309, pp. 6316-6317, 2009.
Nurdin, Baskoro, E.T., Salman, A.N.M. & Gaos, N.N., On the Total Vertex Irregular Labelings for Several Types of Trees, Utilitas Mathematica, 83, pp. 277-290, 2010.
Nurdin, Salman, A.N.M., Gaos, N.N. & Baskoro, E.T., On the Total Vertex-Irregular Strength of a Disjoint Union of T Copies of a Path, J. Combin. Math. Combin. Comput., 71, pp. 227-233, 2009.
Wijaya, K. & Slamin, Total Vertex Irregular Labeling of Wheels, Fans, Suns and Friendship Graphs, J. Combin. Math. Combin. Comput., 65, pp. 103-112, 2008.
Wijaya, K., Slamin, Surahmat & JendroA, S., Total Vertex Irregular Labeling of Complete Bipartite Graphs, J. Combin. Math. Combin. Comput., 55, pp. 129-136, 2005.
IvanA o, J. & JendroA, S., Total Edge Irregularity Strength of Trees, Discussiones Math. Graph Theory, 26, pp. 449-456, 2006.
Nurdin, Salman, A.N.M. & Baskoro, E.T., The Total Edge-Irregular Strengths of the Corona Product of Paths with some Graphs, J. Combin. Math. Combin. Comput., 65, pp. 163-175, 2008.
BaA a, M. & Siddiqui, M.K., Total Edge Irregularity Strength of Generalized Prism, Applied Math. Comput., 235, pp. 168-173, 2014.
JendroA, S., Miakuf, J. & Soták, R., Total Edge Irregularity Strength of Complete and Complete Bipartite Graphs, Electron Notes Discrete Math., 28, pp. 281-285, 2007.
JendroA, S., Miakuf, J. & Soták, R., Total Edge Irregularity Strength of Complete Graphs and Complete Bipartite Graphs, Discrete Math., 310, pp. 400-407, 2010.
Miakuf, J. & JendroA, S., On Total Edge Irregularity Strength of the Grids, Tatra Mt. Math. Publ., 36, pp. 147-151, 2007.
Marzuki, C.C., Salman, A.N.M. & Miller, M., On the Total Irregularity Strength on Cycles and Paths, Far East Journal of Mathematical Sciences, 82(1), pp. 1-21, 2013.
Ramdani, R. & Salman, A.N.M., On the Total Irregularity Strength of Some Cartesian Product Graphs, AKCE Int. J. Graphs Comb., 10(2), pp. 199-209, 2013.