Isolation and Antibacterial Properties of Phenyl Acrylic Acid Derivatives from Balanophora elongata Blume

Authors

  • Nanda Putra School of Pharmacy, Bandung Institute of Technology, Jl. Tamansari 64. Bandung, Indonesia, 40116
  • Goldha Faroliu Faculty of Pharmacy/Sumatran Biota Laboratory, Andalas University, Kampus Limau Manis, Padang, West Sumatra, Indonesia, 25163
  • Nova Syafni Faculty of Pharmacy/Sumatran Biota Laboratory, Andalas University, Kampus Limau Manis, Padang, West Sumatra, Indonesia, 25163
  • Nofrizal Department of Pharmacy, Dharma Andalas University, Jl. Sawahan 103 Simpang Haru, Padang, West Sumatra, Indonesia, 25123
  • Amri Bakhtiar Department of Pharmacy, Faculty of Medicine, Baiturrahmah University, Jl. Bypass Km15, Padang, West Sumatra, Indonesia, 25886
  • Dayar Arbain Faculty of Pharmacy, University 17 Agustus 1945, Jl. Sunter Raya Permai, Jakarta, 14350

DOI:

https://doi.org/10.5614/j.math.fund.sci.2021.53.2.5

Keywords:

antibacterial properties, Balanophora elongata, Balanophoraceae, isolation, parasitic plant, Sumatran Balanophora

Abstract

Balanophora elongata (Balanophoraceae) is a tropical parasitic flowering plant 9 cm in height. Four known phenyl acrylic acid derivatives, methyl caffeate (1), caffeic acid (2), 1,6-di-O-caffeoyl-?-D-glucopyranose (3), and coniferin (4), were isolated from this plant. Structural elucidation of the isolated compounds was determined by IR, LC-ESI-MS, 1D and 2D NMR. Extracts and isolated compounds were tested toward some standard human pathogenic bacteria using the agar disk diffusion method. Their inhibition zones were compared to that of chloramphenicol as positive control. Compound 1 showed inhibition toward Streptococcus mutans, while compound 3 and 4 inhibited Staphylococcus aureus.

References

Shumei, H. & Jin, M., Balanophoraceae, Flora of China 5, pp. 272-276, 2003.

Mukhti, R.P., Syamsuardi & Chairul., Jenis-Jenis Balanophoraceae di Sumatera Barat, Jurnal Biologi Universitas Andalas,

(1), pp. 15-22, 2012.

Wang, X., Liu, Z., Qiao, W., Cheng, R., Liu, B. & She, G., Phytochemicals and Biological Studies of Plants from the Genus Balanophora, Chemistry Central Journal, 6(79), pp. 1-9, 2012.

Simon, M., er das Balanophorin. Monatshefte f Chemie, 32(1), pp. 89-104, 1910.

Quang, D.N., So, T.C., Thanh, N.T.P., Hoa, L.T.P., Dien, P.H., Luong, T.M., Tung, N.Q., Long, L.D., Dai, T.D. & Tien, N.Q., Balanochalcone, A New Chalcone from Balanophora laxiflora Hemsl. Natural Product Research, 32(7), pp. 767-772, 2018.

She, G., Zhang Y. & Yang, C., A New Phenolic Constituent and a Cyanogenic Glycoside from Balanophora involucrata (Balanophoraceae), Chemistry and Biodiversity, 10(6), pp. 1081-1087, 2013.

Wang, K., Zhang Y. & Yang, C., New Phenolic Constituents from Balanophora polyandra with Radical-Scavenging Activity, Chemistry and Biodiversity, 3(12), pp. 1317-1324, 2006.

Wei, J., Huo, X., Yu, Z., Tian, X., Deng, S., Sun, C., Feng, L., Wang, C., Ma, X. & Jia, J., Phenolic Acids from Balanophora involucrata and Their Bioactivities, Fitoterapia, 121(1-10), pp. 129-135, 2017.

Zhou, T., Zhang, X., Zhang, S., Liu, S. & Xuan, L., New Phenylpropanoids and In Vitro ?-Glucosidase Inhibitors from Balanophora japonica, Planta Medica, 77(5), pp. 477-481, 2011.

Ho, S., Tung, Y., Huang, C., Kuo, C., Lin, C., Yang, S. & Wu, J., Hypouricemic Effect of Balanophora laxiflora Extracts and Derived Phytochemicals in Hyperuricemic Mice, Evidence-Based Complementary and Alternative Medicine, 2012(910152), pp. 1-7, 2012.

Ogi, T., Higa, M. & Maruyama, S., Melanin Synthesis Inhibitors from Balanophora fungosa, Journal of Agricultural and Food Chemistry. 59(4), pp. 1109-1114, 2011.

Hosoya, T., Nakata, A., Zaima, K., Latip, J., Din, L.B., Muslim, N. & Morita, H., Papuabalanols A and B, New Tannins from Balanophora papuana, Chemical and Pharmaceutical Bulletin, 58(5), pp. 738-741. 2010.

Xia, C., Mao, Q., Li, R., Chen, Z., Jiang, S., Jiang, Z. & Liu, S., Study of the Mechanism of Caffeoyl Glucopyranoses in IHIV-1 Entry Using Pseudotyped Virus System, Journal South Mediterranean University, 30(4), pp. 720-723, 2010.

Sun, W., Wang, H., Xia, C., Wu, S., Jiang, S., Jiang, Z. & Liu, S., 1,2,6-tri-O-galloyl-?-D-glucopyranose Inhibits gp41-mediated-HIV Envelope Fusion with Target Cell Membrane, Journal South Mediterranean University, 28(7), pp. 1127-1131, 2008.

Faroliu, G., Putra, N., Erlangga, D., Dayatri, K. & Aprillia, D., Laporan Akhir Program Kreativitas Mahasiswa, Isolasi Metabolit Sekunder dari Tumbuhan Parasit (Balanophora elongata) yang Aktif Menghambat Isolat Klinis Multi Drug Resistant Pseudomonas aeruginosa, A Final Report. Faculty of Pharmacy, Andalas University, Padang, 2016.

Syafni, N., Moradi-Afrapoli, F., Danton, O., Wilhelm, A., Stadler, M., Hering, S., Potterat, O., Hamburger, M., HPLC-based Activity Profiling for GABAA Receptor Modulators in Murraya exotica. Natural Product Communications, 14(1), pp. 41-45, 2019.

Biemer, J.J., Antimicrobial Susceptibility Testing by the Kirby-Bauer Disc Diffusion Method, Annals of Clinical Laboratory Science, 3(2), pp. 135-40, 1973.

CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed. CLSI supplement M100, Wayne, PA: Clinical and Laboratory Standards Institute, 2017.

Silverstein, R.M., Webster, F.X., Kiemle, D.J. & Bryce D.L., Spectrometric Identification of Organic Compounds, 8th ed., Wiley, pp. 71-108, 2015.

Chang, S.W., Kim, K.H., Lee, I.K., Choi, S.U., Ryu, S.Y. & Lee, K.R., Phytochemical Constituents of Bistorta manshuriensis, Natural Product Sciences, 15(4), pp. 234-240, 2009.

Jeong, C., Jeong, H. R., Choi, G.N., Kim, D., Lee, U. & Heo, H.J., Neuroprotective and Antioxidant Effects of Caffeic Acid Isolated From Erigeron annuus Leaf, Chinese Medicine, 6(25), pp. 1-9, 2011.

She, G., Zhang, Y. & Yang, C., Phenolic Constituents from Balanophora laxiflora with DPPH Radical-Scavenging Activity. Chemistry & Biodiversity, 6(6), pp. 875-880, 2009.

Hamerski, L., Bomm, M.D., Helena, D., Silva, D.H.S., Young, M.C.M., Furlan, M., Eberlin, M.N., Castro-Gamboa, I., Cavalheiro, A.J. & Bolzani, F.S., Phenylpropanoid glucosides from leaves of Coussarea hydrangeifolia (Rubiaceae), Phytochemistry, 66(16), pp. 1927-1932, 2005.

Terashima, N., Ralph, S.A. & Landucci, L.L. New Facile Syntheses of Monolignols Glucosides; p-Glucocoumaryl Alcohol, Coniferin and Syringin, Holzforschung, 50(2), pp. 151-155, 1995.

Panthama, N., Kanokmedhakul, S. & Kanokmedhakul, K., Galloyl and Hexahydroxydiphenoyl Esters of Phenylpropanoid Glucosides, Phenylpropanoids and Phenylpropanoid Glucosides from Rhizome of Balanophora fungosa, Chemical and Pharmaceutical Bulletin, 57(12), pp. 1352-1355, 2009.

Hosokawa, A., Sumino, M., Nakamura, T., Yano, S., Sekine, T., Ruangrungsi, N., Watanabe, K. & Ikegami, F., A New Lignan from Balanophora abbreviata and Inhibition of Lipopolysaccharide (LPS)-induced Inducible Nitric Oxide Synthase (iNOS) Expression, Chemical and Pharmaceutical Bulletin, 52(10), pp. 1265-1267, 2004.

Takahashi, K., Yoshioka, Y., Kato, E., Katsuki, S., Iida, O., Hosokawa, K. & Kawabata, J., Methyl Caffeate as an ?-Glucosidase Inhibitor from Solanum torvum Fruits and the Activity of Related Compounds, Bioscience Biotechnology and Biochemistry, 74(4), pp. 741-745, 2010.

Balachandran, C., Duraipandiyan, V., Al-Dhabi, N.A., Balakrisma, K., Kalia, N.P., Rajput, V.S. & Ignacimuthu, S., Antimicrobial and Antimycobacterial Activities of Methyl Caffeate Isolated from Solanum torvum Swartz. Fruit, Indian Journal of Microbiology, 52 (4), pp. 676-681, 2012.

Masuda, T., Yamada, K., Akiyama, J., Someya, T., Odaka, Y., Taked, Y. & Sone, Y., Antioxidant Mechanism Studies of Caffeic Acid: Identification of Antioxidant Products of Methyl Caffeate from Lipid Oxidation, Journal of Agricultural and Food Chemistry, 56(14), pp. 5947-5952, 2008.

Arao, M.O., Freire Pessoa, H.L., Lira, A.B., Castillo, Y.P. & Sousa, D.P. de, Synthesis, Antibacterial Evaluation, and QSAR of Caffeic Acid Derivatives. Journal of Chemistry, 2019 (3408315), pp. 1-9, 2019.

Genaro-Mattos, T., Maurio, , Rettori, D., Alonso, A. & Hermes-Lima, M., Antioxidant Activity of Caffeic Acid Against Iron-induced Free Radical Generation ? A Chemical Approach, Plos One, 10(6), pp. 1-12, 2015.

Downloads

Published

2021-09-17

Issue

Section

Articles