Docking Studies and Molecular Dynamics Simulation of Compounds Contained in Kaempferia Galanga L. to Lipoxygenase (LOX) for Anti-Inflammatory Drugs


  • Supandi Pharmacy Department, Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. DR. HAMKA, Jalan Delima II/IV, Jakarta 13460, Indonesia
  • Yeni Pharmacy Department, Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. DR. HAMKA, Jalan Delima II/IV, Jakarta 13460, Indonesia
  • Lusi Putri Dwita Pharmacy Department, Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. DR. HAMKA, Jalan Delima II/IV, Jakarta 13460, Indonesia



anti-inflammatory, docking, Kaempferia galanga L., lipoxygenase, molecular dynamics


Inflammation is a self-protective response to start the healing process. An anti-inflammatory target worth developing are lipoxygenase inhibitors, which have been studied for several diseases, including severe respiratory disease. This research had the goals of estimating the activity of 21 compounds from K. galanga to inhibit the lipoxygenase (LOX) and estimating the bond stability of the ligand-LOX complex. Based on the compound?s affinity for LOX, the compounds in K. galanga were selected by utilizing the PLANTS docking software, with zileuton as the reference ligand. The GROMACS application was used to simulate the molecular dynamics of the LOX-ligand complex at 310 K. Based on the chemPLP score, most of the 21 K. galanga compounds showed a higher affinity towards 5-LOX compared to zileuton. ?-3-carene had the best affinity for 5-LOX. In the simulation of molecular dynamics until 20 ns, the RMSD of ?-3-carene and 5-LOX was not more than 0.03 nm or 0.3 indicating that the whole system showed decent stability and had ?1.67392 x 106 kcal/mol as the average potential energy. The results showed that K. galanga contains active components of 5-LOX inhibitors that could be developed.


Umar, M., Asmawi, M., Sadikun, A., Altaf, R., & Iqbal, M.A., Phytochemistry and Medicinal Properties of Kaempferia Galanga L. (Zingiberaceae) Extracts, African Journal of Pharmacy and Pharmacology, 5(14), pp. 1638-1647, 2011. DOI:10.5897/AJPP11. 388.

Kumar, A., Phytochemistry, Pharmacological Activities and Uses of Traditional Medicinal Plant Kaempferia Galanga L. ? An Overview, Journal of Ethnopharmacol, 253, pp. 112667-112685, 2020. doi:10.1016/j.jep.2020.112667.

Tungcharoen, P., Wattanapiromsakul, C., Tansakul, P., Nakamura, S., Matsuda, H., & Tewtrakul, S., Anti-Inflammatory Effect of Isopimarane Diterpenoids from Kaempferia Galanga, Phytotherapy Research, 34(3), pp. 612-623. 2020. DOI:10.1002/ptr.6549.

Ranjbar, M.M., Assadolahi, V., Yazdani, M., Nikaein, D., & Rashidieh, B., Virtual Dual Inhibition of COX-2 / 5-LOX Enzymes based on Binding Properties of Alpha-amyrins, the Anti-Inflammatory Compound as a Promising Anti-Cancer Drug, EXCLI journal, 15, pp. 238-245. 2016. DOI:10.17179/excli2016-164.

Wisastra, R., & Dekker, F.J., Inflammation, Cancer and Oxidative Lipoxygenase Activity are Intimately Linked, Cancers, 6(3), pp. 1500-1521. 2014. DOI:10.3390/cancers6031500.

Del Grossi Moura, M., Cruz Lopes, L., Silva, M.T., Barberato-Filho, S., Motta, R., & Bergamaschi, C.C., Use of Steroid and Nonsteroidal Anti-Inflammatories in the Treatment of Rheumatoid Arthritis: Systematic Review Protocol, Medicine, 97(41), pp. e12658. 2018. DOI:10.1097/MD.0000000000012658.

Liu, D., Ahmet, A., Ward, L., Krishnamoorthy, P., Mandelcorn, E.D., Brown, J.P., Cohen, A., & Kim, H., A Practical Guide to the Monitoring and Management of the Complications of Systemic Corticosteroid Therapy, All Asth Clin Immun, 9(30), pp. 1-25. 2013. DOI:10.1186/1710-1492-9-30.

Harirforoosh, S., Asghar, W., & Jamali, F., Adverse Effects of Nonsteroidal Antiinflammatory Drugs: An Update of Gastrointestinal, Cardiovascular and Renal Complications, Journal of Pharmacy & Pharmaceutical Sciences, 16, pp. 821-47. 2013. DOI:10.18433/J3VW2F.

Wong, R.S.Y., Disease-modifying Effects of Long-term and Continuous Use of Nonsteroidal Anti-inflammatory Drugs (NSAIDs) in Spondyloarthritis, Adv Pharmacol Pharm Sci, pp. 1-6. 2019. DOI:10.1155/2019/5324170.

Joshi, E.M., Heasley, B.H., Chordia, M.D., & Macdonald, T.L., In vitro Metabolism of 2-Acetylbenzothiophene: Relevance to Zileuton Hepatotoxicity, Chem Res Toxicol, 17(2), pp. 137-43. 2004. DOI:10.1021/tx0341409. PMID: 14967000.

Chen, Y.C., Beware of Docking!, Trends in Pharmacological Sciences. 36(2), pp. 78?95, 2015. DOI:10.1016/

Karplus, M. & McCammon, J.A., Molecular Dynamics Simulations of Biomolecules. Nature Structural Biology, 9(9), pp. 646-652, 2002. DOI:10.1038/nsb0902-646.

Musoev, A., Numonov, S., You, Z., & Gao, H., Discovery of Novel DPP-IV Inhibitors as Potential Candidates for the Treatment of Type 2 Diabetes Mellitus Predicted by 3D QSAR Pharmacophore Models, Molecular Docking and De Novo Evolution, Molecules, 24, pp. 2870-2882, 2019. DOI: 10.3390/molecules24162870.

Ajao, A., Kannan, M., Krishna, R., Yakubu, S., Umoh, V., & Ameh, J., Homology Modeling, Simulation And Molecular Docking Studies Of Catechol-2, 3-Dioxygenase From Burkholderia Cepacia: Involved In Degradation Of Petroleum Hydrocarbons, Bioinformation, 8(18), pp. 848-854, 2012. DOI:10.6026/97320630008848.

Tsolaki, E., Eleftheriou, P., Kartsev, V., Geronikaki, A., & Saxena, A.K., Application of Docking Analysis in the Prediction and Biological Evaluation of the Lipoxygenase Inhibitory Action of Thiazolyl Derivatives of Mycophenolic Acid, Molecules, 23(7), pp. 1621-49. 2018. doi:10.3390/molecules23071621.

Uddin, G., Rauf, A., Arfan, M., Waliullah, Rehman, T.J., Khan, A.Z., Ali, G., Rehman, B., & Zia-ul-Haq, M., Molecular Docking of Diospyrin as a LOX Inhibitory Compound, Journal of Saudi Chemical Society, 20(SUPPL. 1), pp. S448-S450. 2016. DOI:10.1016/j.jscs.2013.01.009.

Muthuraman, S., Sinha, S., Vasavi, C.S., Waidha, K.M., Basu, B., Munussami, P., Balamurali, M.M., Doble, M., & Kumar, R.S., Design, Synthesis and Identification of Novel Coumaperine Derivatives for Inhibition of Human 5-LOX: Antioxidant, Pseudoperoxidase and Docking Studies. Bioorganic & Medicinal Chemistry, 27(4), pp. 604-619. 2019. DOI:10.1016/j.bmc.2018.12.043.

Exner, T. E., Korb, O., & Ten Brink, T., New and Improved Features of the Docking Software PLANTS, Chemistry Central Journal, 3(SUPPL. 1), pp. 16, 2009. DOI:10.1186/1752-153X-3-S1-P16.

Gilbert, N.C., Rui, Z., Neau, D.B., Waight, M.T., Bartlett, S.G., Boeglin, W.E., Brash, A.R., & Newcomer, M.E., Conversion of Human 5-Lipoxygenase to a 15-Lipoxygenase by a Point Mutation to Mimic Phosphorylation at Serine-663, The FASEB Journal, 26(8), pp. 3222-3229, 2012. DOI:10.1096/fj.12-205286.

Atiatul, M., Marlyn Dian, L., Dwi, H., & Parsaoran, S., Molecular Docking of Interaction between E-Cadherin Protein and Conformational Structure of Cyclic Peptide ADTC3 (Ac-CADTPC-NH2) Simulated on 20 ns, Jurnal Kimia Sains dan Aplikasi, 20(1), pp. 30-36, 2017. DOI:10.14710/jksa.20.1.30-36.

Hu, C. & Ma, S., Recent Development of Lipoxygenase Inhibitors as Anti-Inflammatory Agents, Medchemcomm, 9(2), pp. 212-225, 2018. DOI:10.1039/c7md00390k.

Liu, Y., Wang, W., Li, Y., Xiao, Y., Cheng, J., & Jia, J., The 5-Lipoxygenase Inhibitor Zileuton Confers Neuroprotection against Glutamate Oxidative Damage by Inhibiting Ferroptosis, Biological and Pharmaceutical Bulletin, 38(8), pp. 1234-1239, 2015. DOI:10. 1248/bpb.b15-00048.

Rossi, A., Pergola, C., Koeberle, A., Hoffmann, M., Dehm, F., Bramanti, P., Cuzzocrea, S., Werz, O., & Sautebin, L., The 5-Lipoxygenase Inhibitor, Zileuton, Suppresses Prostaglandin Biosynthesis by Inhibition of Arachidonic Acid Release in Macrophages, British journal of pharmacology, 161(3), pp. 555-570, 2010. DOI:10.1111/j.1476-5381.2010.00930.x.

Berger, W., De Chandt, M.T., & Cairns, C.B., Zileuton: Clinical Implications of 5-Lipoxygenase Inhibition in Severe Airway Disease, International Journal of Clinical Practice, 61(4), pp. 663-676, 2007. DOI:10.1111/j.1742-1241.2007.01320.x.

Abueid, L., Uslu, , Cumbul, A., Velio?lu A., Ercan, F., & Alican, ?., Inhibition of 5-Lipoxygenase by Zileuton in a Rat Model of Myocardial Infarction, Anatolian Journal of Cardiology, 17(4), pp. 269-275, 2017. DOI:10.14744/AnatolJCardiol.2016.7248.

Bruno, F., Spaziano, G., Liparulo, A., Roviezzo, F., Nabavi, S.M., Sureda, A., Filosa, R., & D?Agostino, B., Recent Advances in the Search for Novel 5-Lipoxygenase Inhibitors for the Treatment of Asthma, European Journal of Medicinal Chemistry, 153, pp. 65-72, 2018. DOI:10.1016/j.ejmech.2017.10.020.

Laidlaw, T.M., Fuentes, D.J., & Wang, Y., Efficacy of Zileuton in Patients with Asthma and History of Aspirin Sensitivity: A Retrospective Analysis of Data from Two Phase 3 Studies, Journal of Allergy and Clinical Immunology, 139(2), pp. AB384, 2017. DOI:10.1016/j.jaci.2016.12.924.

Liu, Y., Wang, W., Li, Y., Xiao, Y., Cheng, J., & Jia, J., The 5-Lipoxygenase Inhibitor Zileuton Confers Neuroprotection against Glutamate Oxidative Damage by Inhibiting Ferroptosis. Biological and Pharmaceutical Bulletin, 38(8), pp. 1234-1239, 2015. DOI:10.1248/bpb.b15-00048.

Morris, G.M. & Lim-Wilby, M., Molecular docking, Molecular Modeling of Proteins, Humana Press, pp. 365-382), 2008.

Xuan-Yu, M., Hong-Xing, Z., Mihaly, M., & Meng, C., Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer-Aided Drug Design, 7(2), pp. 146-157, 2011. DOI:10.2174/157340911795677602.

Halperin, I., Ma, B., Wolfson, H., & Nussinov, R., Principles of Docking: an Overview of Search Algorithms and a Guide to Scoring Functions. Proteins: Structure, Function, and Bioinformatics, 47(4), pp. 409-443, 2002. DOI:10.1002/prot.10115.

Korb, O., Stzle, T., & Exner, T.E., An Ant Colony Optimization Approach to Flexible Protein-Ligand Docking, Swarm Intelligence, 1(2), pp. 115-134. 2007. DOI:10.1007/s11721-007-0006-9.

Pronk, S., Pl, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., & Hess, B., GROMACS 4.5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit, Bioinformatics, 29(7), pp. 845-854. 2013. DOI:10.1093/bioinformatics/btt055.

Van Dijk, M., Ter Laak, A.M., Wichard, J.D., Capoferri, L., Vermeulen, N.P.E., & Geerke, D.P., Comprehensive and Automated Linear Interaction Energy Based Binding-Affinity Prediction for Multifarious Cytochrome P450 Aromatase Inhibitors, Journal of Chemical Information and Modeling, 57(9), pp. 2294-2308, 2017. DOI:10.1021/acs.jcim.7b00222.

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., & Berendsen, H.J.C., GROMACS: Fast, Flexible, and Free, Journal of Computational Chemistry, 26(16), pp. 1701-1718, 2005. DOI:10.1002/jcc.20291.