Optimal Control in a Mathematical Model of Smoking

Authors

  • Nur Ilmayasinta Department of Mathematic Education, Faculty of Teacher Training and Education, Universitas Islam Lamongan, 62211, Indonesia
  • Heri Purnawan Department of Electrical Engineering, Faculty of Engineering, Universitas Islam Lamongan, 62211, Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2021.53.3.4

Keywords:

fourth-order Runge-Kutta, mathematical model, numerical solutions, optimal control, Pontryagin maximum principle (PMP)

Abstract

This paper presents a dynamic model of smoking with optimal control. The mathematical model is divided into 5 sub-classes, namely, non-smokers, occasional smokers, active smokers, individuals who have temporarily stopped smoking, and individuals who have stopped smoking permanently. Four optimal controls, i.e., anti-smoking education campaign, anti-smoking gum, anti-nicotine drug, and government prohibition of smoking in public spaces are considered in the model. The existence of the controls is also presented. The Pontryagin maximum principle (PMP) was used to solve the optimal control problem. The fourth-order Runge-Kutta was employed to gain the numerical solutions.

References

Ur, S., Ur, E., demir, N. & Hammouch, Z., Mathematical Analysis and Numerical Simulation for a Smoking Model with Atangana-Baleanu Derivative, Chaos, Solitons and Fractals, 118(C), pp. 300-306, 2019. DOI: 10.1016/j.chaos.2018.12.003.

Mahdy, A.M.S., Mohamed, M.S., Gepreel, K.A., Al-Amiri, A. & Higazy, M., Dynamical Characteristics and Signal Flow Graph of Nonlinear Fractional Smoking Mathematical Model, Chaos, Solitons and Fractals, 141, p. 110308, 2020. DOI: 10.1016/j.chaos.2020.110308.

Lahrouz, A., Omari, L., Kiouach, D. & Belmai, A., Deterministic and Stochastic Stability of a Mathematical Model of Smoking, Stat. Probab. Lett., 81(8), pp. 1276-1284, 2011. DOI: 10.1016/j.spl.2011.03.029.

Ur Rahman, G., Agarwal, R.P., Liu, L. & Khan, A., Threshold Dynamics and Optimal Control of an Age-Structured Giving Up Smoking Model, Nonlinear Anal. Real World Appl., 43, pp. 96-120, 2018. DOI: 10.1016/j.nonrwa.2018.02.006

Zhang, Z., Ur Rahman, G. & Agarwal, R.P., Harmonic Mean Type Dynamics of a Delayed Giving Up Smoking Model and Optimal Control Strategy Via Legislation, J. Franklin Inst., 357(15), pp. 10669-10690, 2020. DOI: 10.1016/j.jfranklin.2020.09.002.

Mahdy, A.M.S., Sweilam, N.H. & Higazy, M., Approximate Solution for Solving Nonlinear Fractional Order Smoking Model, Alexandria Eng. J., 59(2), pp. 739-752, 2020. DOI: 10.1016/j.aej.2020.01.049.

Sun, C. & Jia, J., Optimal Control of a Delayed Smoking Model with Immigration, J. Biol. Dyn., 13(1), pp. 447-460, 2019. DOI: 10.1080/17513758.2019.1629031.

Sikander, W., Khan, U., Ahmed, N. & Mohyud-Din, S.T., Optimal Solutions for a Bio Mathematical Model for the Evolution of Smoking Habit, Results Phys., 7, January, pp. 510-517, 2017. DOI: 10.1016/j.rinp.2017.01.001.

Guerrero, F., Santonja, F.J. & Villanueva, R.J., Analysing the Spanish Smoke-Free Legislation of 2006: A New Method to Quantify Its Impact Using a Dynamic Model, Int. J. Drug Policy, 22(4), pp. 247-251, 2011. DOI: 10.1016/j.drugpo.2011.05.003.

Ullah, R., Khan, M., Zaman, G., Islam, S., Khan, M.A., Jan, S. & Gul, T., Dynamical Features of a Mathematical Model on Smoking, J. Appl. Environ. Biol. Sci., 6(1), pp. 92-96, 2016.

Mardlijah, Ilmayasinta, N., Hanafi, L. & S. Sanjaya, Optimal Control of Lipid Extraction Model on Microalgae Using Linear Quadratic Regulator (LQR) and Pontryagin Maximum Principle (PMP) Methods, MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 34(3), 129?140, 2018. DOI: 10.1088/1742-6596/1218/1/012043.

Mardlijah, Ilmayasinta, L., & Irhami, E.A., Optimal Control for Extraction Lipid Model of Microalgae Chlorella Vulgaris Using PMP Method, J. Phys. Conf. Ser., 1218(1), 2019. DOI: 10.1088/1742-6596/1218/1/012043.

Bellman, R. & Kalaba, R., Dynamic Programming and Statistical Communication Theory, Proc. Natl. Acad. Sci., 43(8), pp. 749-751, 1957. DOI: 10.1073/pnas.43.8.749.

Pontryagin, L.S., Selected Works, Volume 4. The Mathematical Theory of Optimal Processes, Gordon and Breach, New York, 1986.

Fleming, W.H. & Rishel, R.W., Deterministic and Stochastic Optimal Control, Springer, New York, 1975. DOI: 10.18485/ai_diskurs_pobede.2019.ch9.

Lukes, D.L., Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, Academic Press, New York, 1982.

Glmann, L., Kern, D. & Maurer, H., Optimal Control Problems with Delays in State and Control Variables Subject to Mixed Control-State Constraints, Optim. Control Appl. Methods, 30(4), pp. 341-365, 2009. DOI: 10.1002/oca.843.

Mahdy, A.M.S., Higazy, M., Gepreel, K.A. & El-dahdouh, A.A.A., Optimal Control and Bifurcation Diagram for a Model Nonlinear Fractional SIRC, Alexandria Eng. J., 59(5), pp. 3481-3501, 2020. DOI: 10.1016/j.aej.2020.05.028.

Gepreel, K.A., Higazy, M. & Mahdy, A.M.S., Optimal Control, Signal Flow Graph, and System Electronic Circuit Realization for Nonlinear Anopheles Mosquito Model, Int. J. Mod. Phys. C, 31(9), 2020. DOI: 10.1142/S0129183120501302.

Alzahrani, E.O., Ahmad, W., Khan, M.A. & Malebary, S.J., Optimal Control Strategies of Zika Virus Model with Mutant, Commun. Nonlinear Sci. Numer. Simul., 93, p. 105532, 2021. DOI: 10.1016/j.cnsns.2020.105532.

Khan M.A. & Fatmawati, Dengue Infection Modeling and Its Optimal Control Analysis in East Java, Indonesia, Heliyon, 7(1), p. e06023, 2021. DOI: 10.1016/j.heliyon.2021.e06023.

Alqarni, M.S., Alghamdi, M., Muhammad, T., Alshomrani, A.S. & Khan, M.A., Mathematical Modeling for Novel Coronavirus (COVID-19) and Control, Numer. Methods Partial Differ. Equ., pp. 1-17, 2020. DOI: 10.1002/num.22695

Alrabaiah, H., Safi, M.A, DarAssi, M.H., Al-Hdaibat, B., Ullah, S., Khan, M.A., Ali Shah, S.A., Optimal Control Analysis of Hepatitis B Virus ith Treatment and Vaccination, Results Phys., 19(1), p. 103599, 2020. DOI: 10.1016/j.rinp.2020.103599.

Chai, Q., Loxton, R., Teo, K.L. & Yang, C., A Class of Optimal State-Delay Control Problems, Nonlinear Anal. Real World Appl., 14(3), pp. 1536-1550, 2013. DOI: 10.1016/j.nonrwa.2012.10.017.

Liu, C., Gong, Z., Teo, K.L., Sun, J. & Caccetta, L., Robust Multi-Objective Optimal Switching Control Arising in 1,3-Propanediol Microbial Fed-Batch Process, Nonlinear Anal. Hybrid Syst., 25, pp. 1-20, 2017. DOI: 10.1016/j.nahs.2017.01.006.

Liu, C., Loxton, R, Lin, Q.U.N. & Teo, K.L., Dynamic Optimization for Switched Time-Delay Systems with State-Dependent Switching Conditions, SIAM J. Control Optim., 56(5), pp. 3499-3523, 2018. DOI: 10.1137/16M1070530.

Liu, C., Loxton, R. & Teo, K.L., A Computational Method for Solving Time-Delay Optimal Control Problems with Free Terminal Time, Syst. Control Lett., 72, pp. 53-60, 2014. DOI: 10.1016/j.sysconle.2014.07.001.

Downloads

Published

2021-12-03

Issue

Section

Articles