Effect of V Dopant on Physicochemical Properties of Vanadium-Doped Anatase Synthesized via Simple Reflux Technique


  • Hari Sutrisno Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Yogyakarta State University, Kampus Karangmalang, Jl. Colombo 1, Yogyakarta, 55281, Indonesia
  • Ariswan Ariswan Department of Physics Education, Faculty of Mathematics and Natural Sciences, Yogyakarta State University, Kampus Karangmalang, Jl. Colombo 1, Yogyakarta, 55281, Indonesia
  • Dyah Purwaningsih Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Yogyakarta State University, Kampus Karangmalang, Jl. Colombo 1, Yogyakarta, 55281, Indonesia




anatase, hysteresis, mesoporous materials, reflux technique, Rietveld analysis


Mesoporous pure TiO2 (M-TiO2) and mesoporous-vanadium-doped TiO2 (M-V-doped TiO2) were successfully synthesized via a facile and simple reflux technique. The purpose of this research was to study the effect of vanadium dopant on the physicochemical properties of all materials obtained. Characterization of the prepared materials was carried out using X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and N2-adsorption-desorption analysis. The presence of Ti and O elements in M-TiO2 and of Ti, V and O elements in M-V doped TiO2 could be detected by SEM-EDS, while the patterns of X-ray diffraction of all the prepared samples had a well-crystalline surface of anatase type. All mesoporous vanadium-doped TiO2 (M-V-doped TiO2) materials performed in a highly transparent mode in the visible region at 554 nm (Eg = 2.24 eV) and 588 nm (Eg = 2.12 eV) for 3.3 and 4.9 wt% V doped TiO2, respectively. The Rietveld refinement method was applied to extract the structural parameters of the M-TiO2 and M-V-doped TiO2 using the Fullprof program in the WinPlotr package. The prepared materials were refined in the crystal system and space group of anatase (tetragonal, I41/amd (141)). The vanadium ion was successfully doped into TiO2. The isotherm type of M-TiO2 and 2.3 wt% V doped TiO2 were of type IV, with a profile of type H2 hysteresis loops, while the 3.3 and 4.9 wt% vanadium-doped TiO2 reflected isotherm type III. The Brunauer-Emmett-Teller (BET) results showed a significant reduction in surface area due to increased concentrations of vanadium. The highest values of BET-specific surface area, pore volume and average pore size of M-TiO2 were 46 m2/g, 18.45 nm and 0.2572 cm3/g respectively.

Author Biography

Hari Sutrisno, Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Yogyakarta State University, Kampus Karangmalang, Jl. Colombo 1, Yogyakarta, 55281, Indonesia

Department of Chemistry Education, Faculty Mathemathics and Natural Science, Yoyakarta State University, Indonesia


Dai, Q., Zhang, Z., He, N., Li, P. & Yuan, C., Preparation and Characterization of Mesostructured Titanium Dioxide and Its Application as a Photocatalyst for the Wastewater Treatment, Materials Science and Engineering, C8-9, pp. 417-423, 1999.

Awati, P.S., Awate, S.V., Shah, P.P. & Ramaswamy, V., Photocatalytic Decomposition of Methylene Blue Using Nanocrystalline Anatase Titania Prepared by Ultrasonic Technique, Catalysis Communications, 4(8), pp. 393-400, 2003.

Dwivedi, C., Dutta, V., Chandiran, A.K., Nazeeruddin, M.K. & Gratzel, M., Anatase TiO2 Hollow Microspheres Fabricated by Continuous Spray Pyrolysis as a Scattering Layer in Dye-Sensitised Solar Cells, Energy Procedia, 33, pp. 223-227, 2013.

Gratzel, M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry, 44, pp. 6841-6851, 2005.

Ashkarran, A.A. & Mohammadizadeh, M.R. Superhydrophilicity of TiO2 Thin Films Using TiCl4 as a Precursor, Materials Research Bulletin, 43, pp. 522-530, 2008.

Masuda, Y. & Kato, K., Liquid-Phase Patterning and Microstructure of Anatase TiO2 Films on SnO2:F Substrates Using Superhydrophilic Surface, Chemistry of Material, 20, pp. 1057-1063, 2008.

Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J. & Jacoby, W.A., Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward and Understanding of Its Killing Mechanism, Applied and Environmental, Microbiology, 65(9), pp. 4094-4098, 1999.

Huang, Z., Maness, P.C., Blake, D.M., Wolfrum, E.J., Smolinski, S. & Jacoby, W.A., Bactericidal Mode of Titanium Dioxide Photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 130, pp. 163-170, 2000.

Yang, G., Jiang, Z., Shi, H., Xiao, T. & Yan, Z., Preparation of Highly Visible-Light Active N-Doped TiO2 Photocatalyst, Journal of Materials Chemistry, 20, pp. 5201-5309, 2010.

Yang, J., Bai, H., Jiang, Q. & Lian, J., Visible-Light Photocatalysis in Nitrogen-Carbon-Doped TiO2 Films Obtained by Heating TiO2 Gel-Film in an Ionized N2 Gas, Thin Solid Films, 516(8), pp. 1736-1742, 2008.

Nishikiori, H., Hayashibe, M. & Fujii, T., Visible Light-Photocatalytic Activity of Sulfate-Doped Titanium Dioxide Prepared by the Sola^Gel Method, Catalysts, 3, pp. 363-377, 2013.

Wang, H., Niu, J., Long, X. & He, Y., Sonophotocatalitic Degradation of Methyl Orange by Nanosized Ag/TiO2 Particles in Aqueous Solutions, Ultrasonic Sonochemistry, 15, pp. 386-392, 2008.

Al-Hartomy, O.A., Synthesis, Characterization, Photocatalytic and Photovoltaic Performance of Ag-Doped TiO2 Loaded on The Pt-Carbon Spheres, Materials Science in Semiconductor Processing, 27, pp. 71-78, 2014.

Liu, B., Wang, X., Cai, G., Wen, L., Song, Y. & Zhao, X., Low Temperature Fabrication of V-Doped TiO2 Nanoparticles, Structure and Photocatalytic Studies, Journal of Hazardous Materials, 169(1-3), pp.1112-1118, 2009.

Tian, B., Li, C. & Zhang, J., One-Step Preparation, Characterization and Visible-Light Photocatalytic Activity of Cr-doped TiO2 with Anatase and Rutile Bicrystalline Phases, Chemical Engineering Journal, 191, pp. 402-409, 2012.

Thuy, N.M., Van, D.Q. & Hai, L.T.H., The Visible Light Activity of the TiO2 and TiO2:V4+ Photocatalyst, Nanomaterials and Nanotechnology, 2(14), pp. 1-8, 2012.

Zhang, Z., Shao, C., Zhang, L., Li, X. & Liu, Y., Electrospun Nanofibers of V-Doped TiO2 with High Photocatalytic Activity, Journal of Colloid Interface Science, 351, pp. 57-52, 2010.

Songara, S., Patra, M.K., Manoth, M., Saini, L., Gupta, V., Gowd, G.S., Vadera, S.R. & Kumar, N., Synthesis and Studies on Photochromic Properties of Vanadium Doped TiO2 Nanoparticles, Journal of Photochemistry and Photobiology A: Chemistry, 209(1), pp. 68-73, 2010.

Yang, X., Cao, C., Hohn, K., Erickson, L., Maghirang, R., Hamal, D. & Klabunde, K. Highly Visible-Light Active C- and V-Doped TiO2 for Degradation of Acetaldehyde, Journal of Catalysis, 252(2), pp. 296-302, 2007.

Bettinelli, M., Dallacasa, V., Falcomer, D., Fornasiero, P., Gombac, V., Montini, T., Roman, L., & Speghini, A. Photocatalytic Activity of TiO2 Doped with Boron and Vanadium, Journal of Hazardous Materials, 146, pp. 529-534, 2007.

Tian, B., Li, C., Gu, F., Jiang, H., Hu, Y. & Zhang, J., Flame Sprayed V-doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity under Visible Light Irradiation, Chemical Engineering Journal, 151(1-3), pp. 220-227, 2009.

Li, Z., Ding, D. & Ning, C., p-Type Hydrogen Sensing with Al- and V-Doped TiO2 Nanostructures, Nanoscale Research Letter, 8(25), pp. 1-8, 2013.

Li, L., Chen, S., Xu, L., Bai, Y., Nie, Z., Liu, H. & Qi, L., 2014. Template-Free Synthesis of Uniform Mesoporous SnO2 Nanospheres for Efficient Phosphopeptide Enrichment, Journal of Materials Chemistry B, 2, pp. 1121-1124, 2014.

Lu, B., Li, Z. & Kawamoto, K., Synthesis of Mesoporous Ceria without Template. Materials Research Bulletin, 48(7), pp. 2504-2510, 2013.

Jolivet, J.P., Henry, M. & Livage, J., De la Solution a L'oxyde: Condensation des Cations en Solution Aqueuse, Chimie de Surface des Oxydes. Inter edition et CNRS edition, 1994.

Rich, R.L., Inorganic Reactions in Water, Springer, 2006.

Roisnel, T. & Ridriguez-Carvajal, J., WinPLOTR a Graphic Tool for Powder Diffraction, CNRS-Lab. de Chimie du Solide et Inorganique Moleculaire Universite de Rennes, 2001.

Brunauer, S., Emmett, P.H. & Teller, E., Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60(2), pp. 309-319, 1938.

Barrett, E.P., Joyner, L.G. & Halenda, P.P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, 3(1), pp. 373-380, 1951.

Feist, T. P. & Davies, P.K. The Soft Chemical Synthesis of TiO2(B) from Layered Titanates, Journal of Solid State Chemistry, 101, pp. 275-295, 1992.

Fu, C., Huang, Z., Li, J. & Guo, D., Microstructure and Ferroelectric Properties of (Bi0.9Ho0.1)3.999Ti2.997V0.003O12 Thin Films Prepared by Sol-gel Method for Nonvolatile Memory, Journal Material Science Technology, 26(8), pp. 679-681, 2010.

Lowell, S., Shields, J.E., Thomas, M.A. & Thommes, M., Characterization of Porous Solids and Powders: Surface Area. Pore Size and Density, Springer, 2006.

Condon, J.B., Surface Area and Porosity Determinations by Physisorption Measurements and Theory, 1st ed., Elsevier, 2006.