Evaluation NO2 Detection Using Low-Cost Folded-Path Photometer
DOI:
https://doi.org/10.5614/j.math.fund.sci.2023.54.3.5Keywords:
DOAS, intercomparison, nitrogen dioxide, photoabsorption, spectrometerAbstract
The measurement of nitrogen dioxide (NO2) in industrial and residential areas needs comprehensive and reliable instrumentation providing long-interference-free operation and minimum maintenance and recalibration. Differential optical absorption spectroscopy can be used as a direct measurement technique based on the specific absorption characteristics of NO2 following the Berr-Lambert law. This paper proposes a low-cost folded-path photometer to measure NO2 in the air. Cheap tubular acrylic was used as a detection cell with a 3D printed framework, making it compact, modular, and flexible. Evaluation of this differential optical absorption spectroscope (DOAS) was conducted by instrument test responses using NO2 gas. The estimated LOD was ~1263 ppb using a 2-nm resolution of the spectrometer and a 6-meter detection cell length. Deviation of the DOAS was estimated to be 0.8% at high concentration and 2.85% at low concentration based on the calibrated DOAS. Intercomparison of the results was conducted using two different instruments to evaluate the DOAS?s performance by measuring NO2 from motorcycle emissions, which indicated that there was a good correlation between the results. The coefficient correlation (R) was 0.649 for the DOAS- ASTM D1607 Griesz Saltzmann method pairing and 0.846 for the DOAS- electrochemical gas analyzer pairing.
References
W. World Health Organization, Air pollution, 2021. https://www.who.int/health-topics/air-pollution#tab=tab_2 (accessed 27 May 2021).
P. Saxena, S. Sonwani, P. Saxena & S. Sonwani, Primary Criteria Air Pollutants: Environmental Health Effects, in Criteria Air Pollutants and their Impact on Environmental Health, Springer Singapore, 1(1), pp. 49-82, 2019. DOI: 10.1007/978-981-13-9992-3_3. _
A. Faustini, R. Rapp & F. Forastiere, Nitrogen Dioxide and Mortality: Review and Meta-Analysis of Long-Term Studies, European Respiratory Journal, 44(3), pp. 744-753, 2014. DOI: 10.1183/09031936.00114713.
EPA, Basic Information about NO2 | Nitrogen Dioxide (NO2) Pollution | US EPA, www.epa.gov, 2016. https://www.epa.gov/no2-pollution/basic- information-about-no2 (accessed 3 June 2021).
J.W. Birks., Folded Tubular Photometer For Atmospheric Measurements Of NO&Amp; Lt; Sub&Amp; Gt;2&Amp; Lt;/Sub&Amp;Gt; And NO, Atmospheric Measurement Techniques, 11(5), pp. 2821?2835, 2018. DOI: 10.5194/amt-11-2821-2018.
A. M. Simbolon, J. A. Fatkhurrahman, A. Mariani, I. R. J. Sari, Syafrudin & Sudarno, Challenge of Integrated Low-Cost Emission Monitoring System into A Digital Information System, in IOP Conference Series: Earth and Environmental Science, 2021, 623(1), pp. 012076, 2021. DOI: 10.1088/1755- 1315/623/1/012076.
U. Platt & J. Stutz, Interaction of Molecules with Radiation, in Differential Optical Absorption Spectroscopy, Springer Berlin Heidelberg, pp. 77?90, 2008. DOI: 10.1007/978-3-540-75776-4_3.
P.P. Geiko, S. S. Smirnov & I. V. Samokhvalov, Open Path Measurement of Atmospheric Pollutants Using DOAS Method, in 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 10035, pp. 818-824, 2016. DOI: 10.1117/12.2248817.
R. Jimenez, H. van den Bergh & B. Calpini, DOAS as an Analytical Tool for Effective Air Pollution Management, 1999.
H. Edner, P. Ragnarson, S. Spnare, & S. Svanberg, Differential Optical Absorption Spectroscopy (DOAS) System for Urban Atmospheric Pollution Monitoring, Applied Optics, 32(3), pp. 327-333, 1993. DOI: 10.1364/ao.32.000327.
X. Yi, Z. Zhang & P. Smith, Real-Time Measurements of Landfill Atmospheric Ammonia Using Mobile White Cell Differential Optical Absorption Spectroscopy System and Engineering Applications, Journal of the Air and Waste Management Association, 71(1), pp. 34-45, 2021. DOI: 10.1080/10962247.2020.1820405.
A. Axelevitch, B. Gorenstein & G. Golan, Investigation of Optical Transmission in Thin Metal Films, Physics Procedia, 32, pp. 1-13, 2012. DOI: 10.1016/j.phpro.2012.03.510.
J. Reader, C. J. Sansonetti, & J. M. Bridges, Irradiances of Spectral Lines in Mercury Pencil Lamps, Applied Optics, 35(1), pp. 78-83, 1996. DOI: 10.1364/ao.35.000078.
A. Aljalal., Detection of Trace Amount of NO2-Gas Using Tunable Blue Laser Diode Nonlinear Optical of Chiral Limonene View Project Effect of Doping On Van der Waals Cr-Based Materials View Project Detection of Trace Amount of NO2 Gas Using Tunable Blue Laser Diode, in Optical Sensors 2017, 10231, pp. 234-240, 2017. DOI: 10.1117/12.2264513. Proc. of SPIE Vol. 10231 102311E-7.
W. Al-Basheer, T. Adigun, A. Aljalal & K. Gasmi, Spectral and Spatial Dynamics of a Multimode Gan-Based Blue Laser Diode, Journal of Modern Optics, 67(4), pp. 1-6, 2020. DOI: 10.1080/09500340.2020.1733692.
C. D. Elvidge, D. M. Keith, B. T. Tuttle & K. E. Baugh, Spectral Identification of Lighting Type and Character, Sensors, 10(4), pp. 3961-3988, 2010. DOI: 10.3390/s100403961.
A. C. Vandaele., Measurements of The NO2 Absorption Cross-Section from 42 000 Cm-1 To 10 000 Cm-1 (238-1000 Nm) At 220 K and 294 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 59(3-5), pp. 171-184, 1998. DOI: 10.1016/S0022-4073(97)00168-4.
J. M. Nasse, P. Eger, D. Pler, S. Schmitt, U. Frie & U. Platt, Recent Improvements of Long-Path Doas Measurements: Impact on Accuracy and Stability of Short-Term and Automated Long-Term Observations, Atmospheric Measurement Techniques, 12(8), pp. 4149-4169, 2019. DOI: 10.5194/amt-12-4149-2019.
P. Konieczka, Validation and Regulatory Issues for Sample Preparation, in Comprehensive Sampling and Sample Preparation, pp. 699-711, 2012. DOI: 10.1016/B978-0-12-381373-2.00064-8.
B. Devine, A Miniaturised Spectrometer Device for the Detection of Nitrogen Dioxide in an Urban Environment A miniaturised spectrometer device for the detection of Nitrogen Dioxide in an urban environment, 2013. DOI: 10.21427/D79594.
J. A. Fatkhurrahman., DOAS Calibration Technique for SO2 Emission Measurement Based on H2SO4 and Na2SO3 Reaction, Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 11(1), pp. 36-45, 2020. DOI: 10.21771/jrtppi.2020.v11.no1.p36-45.
F. Margelli & G. Giovanelli, Calibration and Vanddation Methods for DOAS Remote Sensing Systems, WIT Transactions on Ecology and the Environment, 53, 2002. DOI: 10.2495/AIR020381.
N. Bouton, J. Leprovost, Y. Messager, L. Courthaudon, & Aly tech, Juvisy-sur-Orge, Multipoint Calibration Is Now of High Interest for Gases as Well, 2022.
O. US EPA, EMC Conditional Test Methods (CTM-022). United States, 1995.
A. A. Al-Jalal, W. Al-Basheer, K. Gasmi, & M. S. Romadhon, Measurement of Low Concentrations of NO2 Gas by Differential Optical Absorption Spectroscopy Method, Measurement, 146, pp. 613-617, 2019. DOI: 10.1016/J.MEASUREMENT.2019.07.022.
ISO - ISO 12963:2017 - Gas Analysis ? Comparison Methods for The Determination of the Composition of Gas Mixtures Based On One- And Two-Point Calibration. https://www.iso.org/standard/64891.html (accessed 30 December 2022).
T. Zhang, M. Wooster, D. C. Green & B. Main, A Mathematical Approach to Merging Data from Different Trace Gas/Particulate Sensors Having Dissimilar (T90) Response Times: Application to Fire Emission Factor Determination, Aerosol and Air Quality Research, 20(2), pp. 281-290, 2020. DOI: 10.4209/AAQR.2019.02.0061.
K. Gasmi, A. Aljalal, W. Al-Basheer & M. Abdulahi, Analysis of NOX, NO and NO2 Ambient Levels as A Function of Meteorological Parameters in Dhahran, Saudi Arabia, WIT Transactions on Ecology and the Environment, 211, pp. 77-86, 2017. DOI: 10.2495/AIR170081.


