Dielectric Meta-lattices with Tunable Reflectivity

Authors

  • Suhandoko Dwi Isro Physics Study Program, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
  • Agoes Soehianie Physics Study Program, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
  • Alexander Agustinus Iskandar Physics Study Program, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2022.54.1.1

Keywords:

display, metasurface, meta-lattices, nanotubes, transflector

Abstract

We report a study on the reflective performance of a dielectric meta-lattice formed by a one-dimensional periodic arrangement of silicon nanotubes. It was found that switching from transparent state to reflective state can be done by simply varying one optical parameter of the meta-lattice. The meta-lattice was shown to be capable of providing near-zero and near-unity reflectance at any desired wavelength, even in oblique incidence cases. The results are thus very promising for the development of future optical devices.

References

Ge, Z. & Wu, S.T., Transflective Liquid Crystal Displays, 1st ed., John Wiley & Sons, pp. 1-3, 2010.

Tajima, K., Hotta, H., Yamada, Y., Okada, M., Yoshimura, K., Electrochromic Switchable Mirror Glass with Controllable Reflectance, Applied Physics Letters, 100(9), pp. 091906, 2012.

Park, C., Seo, S., Shin, H., Sarwade, B.D., Na, J., Kim, E., Switchable Silver Mirrors with Long Memory Effects, Chemical Science, 6(1), pp. 596-602, 2015.

Eh, A.L.S., Lin, M.-F., Cui, M., Cai, G., Lee, P.S., A Copper-Based Reversible Electrochemical Mirror Device with Switchability Between Transparent, Blue, and Mirror States, Journal of Materials Chemistry C, 5(26), pp. 6547-6554, 2017.

Tajima, K., Yamada, Y., Bao, S., Okada, M., Yoshimura, K., Flexible All-Solid-State Switchable Mirror on Plastic Sheet, Applied Physics Letters, 92(4), pp. 041912, 2008.

Liu, H., Yang, H., Li, Y., Song, B., Wang, Y., et al., Switchable All?Dielectric Metasurfaces for Full?Color Reflective Display, Advanced Optical Materials, 7(8), pp. 1801639, 2019.

Yang, D.K. & Wu, S.T., Fundamentals of Liquid Crystal Devices, 2nd Ed., John Wiley & Sons, 291, 2014.

Liu, C.K., Chen, W.-H., Li, C.-Y., Cheng, K.-T., High-Contrast and Scattering-Type Transflective Liquid Crystal Displays Based on Polymer-Network Liquid Crystals, Polymers, 12(4), pp. 739, 2020.

Chen, H.Y., Lu, S.-F., Wu, P.-H., Wang, C.-S., Transflective BPIII Mode with No Internal Reflector, Liquid Crystals, 44(3), pp. 472-478, 2017.

Jahani, S. & Jacob, Z., All-Dielectric Metamaterials, Nature Nanotechnology, 11(1), pp. 23-26, 2016.

Kivshar, Y. & Miroshnichenko, A.E., Meta-Optics with Mie Resonances, Optics and Photonics News, 28(1), pp. 24-31, 2017.

Liu, W. & Miroshnichenko, A.E., Beam Steering with Dielectric Metalattices, ACS Photonics, 5(5), pp. 1733-1741, 2017.

Isro, S.D., Iskandar A.A., Tjia, M.O., Complementary High-Performance Sensing of Gases and Liquids Using Silver Nanotube, Journal of Optics, 19(11), pp. 115003, 2017.

Isro, S.D., Iskandar, A.A., Kivshar, Y.S., Shadrivov, I.V., Engineering Scattering Patterns with Asymmetric Dielectric Nanorods, Optics Express, 26(25), pp. 32624-32630, 2018.

Isro, S.D., Iskandar A.A., Tjia, M.O., Core Size and Axial Offset Dependent Extinction Characteristics for Silver Nanotube and Its Application to Directional Sensing, JOSA B, 36(6), pp. 1637-1644, 2019.

Wang, L., Lin, X., Liang, X., Wu, J., Hu, W., et al., Large Birefringence Liquid Crystal Material in Terahertz Range, Optical Materials Express, 2(10), pp. 1314-1319, 2012.

Yang C.S., Lin, C.J., Pan, R.P., Que, C.T., Yamamoto, K., et al., The Complex Refractive Indices of The Liquid Crystal Mixture E7 in the Terahertz Frequency Range, JOSA B, 27(9), pp. 1866-1873, 2010.

Lorenz, A., Kitzerow, H.S., Schwuchow, A., Kobelke, J., Bartelt, H., Photonic Crystal Fiber with a Dual-Frequency Addressable Liquid Crystal: Behavior in the Visible Wavelength Range, Optics Express, 16(23), pp. 19375-19381, 2008.

Si, G., Zhao, Y., Leong, E., Liu, Y., Liquid-Crystal-enabled Active Plasmonics: A Review, Materials, 7(2), pp. 1296-1317, 2014.

Aspnes, D.E. & Studna, A.A., Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb From 1.5 To 6.0 Ev, Phys. Rev. B, 27(2), pp. 985-1009, 1983.

Green, M.A. & Keevers, M.J., Optical Properties of Intrinsic Silicon At 300 K, Progress in Photovoltaics: Research and Applications, 3(3), pp. 189-192, 1995.

Yang, J.H., Babicheva, V.E., Yu, M.W., Lu, T.C., Lin, T.R., Chen, K.P., Structural Colors Enabled by Lattice Resonance on Silicon Nitride Metasurfaces, ACS Nano, 14(5), pp. 5678-5685, 2020.

Liu, W., Generalized Magnetic Mirrors, Physical Review Letters, 119(12), pp. 123902, 2017.

Yasumoto, K. & Jia, H., Modeling of Photonic Crystals by Multilayered Periodic Arrays of Circular Cylinders, Electromagnetic Theory and Applications for Photonic Crystals, Kiyotoshi Yasumoto (1st ed.), CRC Press Taylor & Francis Group, pp. 131-135, 2018.

Li, J., Verellen, N., Van Dorpe, P., Engineering Electric and Magnetic Dipole Coupling in Arrays of Dielectric Nanoparticle, Journal of Applied Physics, 123(8), pp. 083101, 2018.

Wang, W., Zheng, L., Xiong, L., Qi, J., Li, B., High Q-Factor Multiple Fano Resonances for High-Sensitivity Sensing in All-Dielectric Metamaterials, OSA Continuum, 2(10), pp. 2818-2825, 2019.

Downloads

Published

2022-02-28

Issue

Section

Articles