Oxygen Reduction Reaction Mechanism on the Square Paddle-Wheel Cage Site of TM-BTC (TM=Mn, Fe, Cu) Metal-Organic Framework

Authors

  • Ahmad Nuruddin Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
  • Adhitya Gandaryus Saputro Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
  • Syauqi Abdurrahman Abrori Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
  • Arifin Luthfi Maulana Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
  • Virgiawan Listanto Rahagung Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
  • Mohammad Kemal Agusta Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
  • Fadjar Fathurrahman Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
  • Amrina Mustaqim Engineering Physics Department, Institut Teknologi Sumatera Jl. Terusan Ryacudu, Way Huwi, Lampung 35365, Indonesia
  • Hermawan Kresno Dipojono Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2022.54.2.2

Keywords:

density functional theory , microkinetic, MOF, oxygen reduction reaction, TM-BTC

Abstract

Our study examined the mechanism of oxygen reduction reactions (ORR) at the square paddle-wheel cage active site of TM-BTC metal-organic frameworks (MOFs), where TM is a transition metal, Mn, Fe, or Cu. We used a combination of density functional theory (DFT) and microkinetic calculations to investigate this mechanism. By using a small cluster for modeling the TM-BTC active site structure, we successfully reproduced the experimental trend of ORR activity in the TM-BTC systems: Mn-BTC > Fe-BTC > Cu-BTC. We also found that the unusual ORR activity trend in experiments for Mn and Fe systems originates from the strength of OH adsorption on these systems. The Mn-BTC system exhibits higher ORR activity than the Fe-BTC system due to its weaker adsorption of OH groups. A very strong OH adsorption makes the final OH reduction step sluggish, hence hindering the ORR process.

References

Hassan, N., Catalytic Performance of Nanostructured Materials Recently used for Developing Fuel Cells? Electrodes, International Journal of Hydrogen Energy, 46(79), pp. 39315-39368, 2021.

Sun, M., Gong, S., Zhang, Y., and Niu, Z., A Perspective on the PGM-Free Metal-Nitrogen-Carbon Catalysts for PEMFC, Journal of Energy Chemistry, 2021.

Cui, J., Chen, Q., Li, X., and Zhang, S., Recent Advances in Non-Precious Metal Electrocatalysts for Oxygen Reduction in Acidic Media and PEMFCs: an Activity, Stability and Mechanism Study, Green Chemistry, 23(18), pp. 6898-6925, 2021.

Liang, Z., Zhao, R., Qiu, T., Zou, R., and Xu, Q., Metal-Organic Framework-Derived Materials for Electrochemical Energy Applications, EnergyChem, 1(1), pp. 100001, 2019.

Zhang, J.-P., Zhou, H.-L., Zhou, D.-D., Liao, P.-Q., and Chen, X.-M., Controlling Flexibility of Metal-Organic Frameworks, National Science Review, 5(6), pp. 907-919, Nov.2018.

Lu, X. F., Xia, B. Y., Zang, S. Q., and Lou, X. W., Metal?Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction, Angewandte Chemie ? International Edition, 59(12), pp. 4634-4650, 2020.

Zhong, H., Luo, Y., He, S., Tang, P., Li, D., Alonso-Vante, N., and Feng, Y., Electrocatalytic Cobalt Nanoparticles Interacting with Nitrogendoped Carbon Nanotube In Situ Generated from a Metal-Organic Framework for the Oxygen Reduction Reaction, ACS Applied Materials and Interfaces, 9(3), pp. 2541-2549, 2017.

Furukawa, H., Cordova, K.E., O?Keeffe, M., and Yaghi, O.M., The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 2013.

Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J. F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J. S., Hwang, Y. K., Marsaud, V., Bories, P. N., Cynober, L., Gil, S., Fey, G., Couvreur, P., and Gref, R., Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Deliveryand Imaging, Nature Materials, 9(2), pp. 172-178, 2010.

Taylor-Pashow, K. M. L., Rocca, J. Della, Xie, Z., Tran, S., and Lin, W., Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery, Journal of the American Chemical Society, 131(40), pp. 14261-14263, 2009.

Cui, Y., Chen, B., and Qian, G., Lanthanide Metal-Organic Frameworks for Luminescent Sensing and Light-Emitting Applications. Coordination Chemistry Reviews., 273-274, 76-86. 2014.

Jeong, E., Lee, W. R., Ryu, D. W., Kim, Y., Phang, W. J., Koh, E. K., and Hong, C. S., Reversible Structural Transformation and Selective Gas Adsorption in a Unique Aqua-Bridged Mn(ii) Metal?Organic Framework, Chemical Communications, 49(23), pp. 2329-2331, 2013.

Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Llabr I Xamena, F. X., and Gascon, J., Metal-Organic Framework Nanosheets in Polymer Composite Materials for Gas Separation, Nature Materials, 14(1), pp. 48-55, 2015.

Ricco, R., Pfeiffer, C., Sumida, K., Sumby, C. J., Falcaro, P., Furukawa, S., Champness, N. R., and Doonan, C. J., Emerging Applications of Metal-Organic Frameworks, CrystEngComm, 18(35), pp. 6532-6542, 2016

Santos, V. P., Wezendonk, T. A., Ja, J. J. D., Dugulan, A. I., Nasalevich, M. A., Islam, H. U., Chojecki, A., Sartipi, S., Sun, X., Hakeem, A. A., Koeken, A. C. J., Ruitenbeek, M., Davidian, T., Meima, G. R., Sankar, G., Kapteijn, F., Makkee, M., and Gascon, J., Metal Organic Framework-Mediated Synthesis of Highly Active and Stable Fischer-Tropsch Catalysts, Nature Communications, 6, 2015.

Mao, J., Yang, L., Yu, P., Wei, X., and Mao, L., Electrocatalytic Four-Electron Reduction of Oxygen with Copper (II)-Based Metal-Organic Frameworks, Electrochemistry Communications, 19(1), pp. 29-31, 2012.

Sava Gallis, D. F., Parkes, M. V., Greathouse, J. A., Zhang, X., and Nenoff, T. M., Enhanced O2 Selectivity versus N2 by Partial Metal Substitution in Cu-BTC, Chemistry of Materials, 27(6), pp. 2018, 2015.

Fleker, O., Borenstein, A., Lavi, R., Benisvy, L., Ruthstein, S., and Aurbach, D., Preparation and Properties of Metal Organic Framework/Activated Carbon Composite Materials, Langmuir, 32(19), pp. 4935-4944, 2016.

Gonen, S., Lori, O., Cohen-Taguri, G., and Elbaz, L., Metal Organic Frameworks as a Catalyst for Oxygen Reduction: An Unexpected Outcome of a Highly Active Mn-MOF-Based Catalyst Incorporated in Activated Carbon, Nanoscale, 10(20), pp. 9634-9641, 2018.

Agusta, M. K., Saputro, A. G., Tanuwijaya, V. V., Hidayat, N. N., and Dipojono, H. K., Hydrogen Adsorption on Fe-based Metal Organic Frameworks: DFT Study, Procedia Engineering, 170, pp. 136-140, 2017.

Sculley, J., Yuan, D., and Zhou, H.-C., The Current Status of Hydrogen Storage in Metal?Organic Frameworks ? Updated, Energy Environ. Sci., 4(8), pp. 2721-2735, 2011

Rowsell, J. L. C. and Yaghi, O. M., Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks, Journal of the American Chemical Society, 128(4), pp. 1304-1315, 2006.

M. J. Frisch et al., Gaussian 09 Revision D.01.

Young, D., Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, John Wiley & Sons, Ltd: 2001.

Asazawa, K., Kishi, H., Tanaka, H., Matsumura, D., Tamura, K., Nishihata, Y., Saputro, A. G., Nakanishi, H., Kasai, H., Artyushkova, K., and Atanassov, P., In Situ XAFS and HAXPES Analysis and Theoretical Study of Cobalt Polypyrrole Incorporated on Carbon (CoPPyC) Oxygen Reduction Reaction Catalysts for Anion-Exchange Membrane Fuel Cells, Journal of Physical Chemistry C, 118(44), pp. 25480-25486, 2014.

Mukherjee, B., Investigation of FePc Nanoribbon as ORR Catalyst in Alkaline Medium: A DFT Based Approach, Journal of The Electrochemical Society, 165(15), pp. J3231-J3235, 2018.

Duan, Z. and Henkelman, G., Theoretical Resolution of the Exceptional Oxygen Reduction Activity of Au(100) in Alkaline Media, ACS Catalysis, 2019.

Liu, S., White, M. G., and Liu, P., Mechanism of Oxygen Reduction Reaction on Pt(111) in Alkaline Solution: Importance of Chemisorbed Water on Surface, Journal of Physical Chemistry C, 2016.

Nskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Lyngby, D.-, and Jo, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, pp. 17886-17892, 2004.

Saputro, A. G., Maulana, A. L., Fathurrahman, F., Mahyuddin, M. H., Agusta, M. K., Shukri, G., Yudistira, H. T., Wenten, I. G., and Dipojono, H. K., Formation of Tilted FeN4 Configuration as the Origin of Oxygen Reduction Reaction Activity Enhancement on a Pyrolyzed Fe-N-C Catalyst with FeN4-Edge Active Sites, The Journal of Physical Chemistry C, 125, 2021.

Saputro, A. G., Maulana, A. L., Aprilyanti, F. D., and Dipojono, H. K., Theoretical Study of Direct Carbon Dioxide Conversion to Formic Acid on Transition Metal-Doped Subnanometer Palladium Cluster, Journal of Engineering and Technological Sciences, 53(4), 2021.

Maulana, A. L., Saputro, A. G., Prasetyo, Y., Mahyuddin, M. H., Iqbal, M., Yudistira, H. T., Wenten, I. G., and Dipojono, H. K., Two-Electron Electrochemical Reduction of CO2 on B-Doped Ni?N?C Catalysts: A First-Principles Study, The Journal of Physical Chemistry C, 125(2), 2021.

Saputro, A. G., Maulana, A. L., Aprilyanti, F. D., and Dipojono, H. K., Theoretical Study of Direct Carbon Dioxide Conversion to Formic Acid on Transition Metal-doped Subnanometer Palladium Clusters, Journal of Engineering and Technological Sciences, 53(4), pp. 210402, 2021.

Saputro, A. G., Akbar, F. T., Setyagar, N. P. P., Agusta, M. K., Pramudya, A. D., and Dipojono, H. K., Effect of Surface Defects on the Interaction of the Oxygen Molecule with the ZnO(101?0) Surface, New Journal of Chemistry, 44, pp. 7376-7385, 2020.

Saputro, A. G., Fajrial, A. K., Maulana, A. L., Fathurrahman, F., Agusta, M. K., Akbar, F. T., and Dipojono, H. K., Dissociative Oxygen Reduction Reaction Mechanism on the Neighboring Active Sites of Boron-Doped Pyrolyzed Fe-N-C Catalyst, The Journal of Physical Chemistry C, 124, pp. 11383-11391, 2020.

Saputro, A. G., Putra, R. I. D., Maulana, A. L., Karami, M. U., Pradana, M. R., Agusta, M. K., Dipojono, H. K., and Kasai, H., Theoretical Study of CO2 Hydrogenation to Methanol on Isolated Small Pdx Clusters, Journal of Energy Chemistry, pp. 79-87, 2019.

Maulana, A. L., Putra, R. I. D., Saputro, A. G., Agusta, M. K., Nugraha, N., and Dipojono, H. K., DFT and Microkinetic Investigation of Methanol Synthesis via CO2 Hydrogenation on Ni(111)-Based Surfaces, Physical Chemistry Chemical Physics, 21(111), pp. 20276-20286, 2019.

Nuruddin, A., Saputro, A. G., Maulana, A. L., Fajrial, A. K., Shukri, G., Mahyuddin, M. H., Aprilyanti, F. D., Harimawan, A., and Dipojono, H. K., Enhancing Oxygen Reduction Reaction Activity of Pyrolyzed Fe?N?C Catalyst by the Inclusion of BN Dopant at the Graphitic Edges, Applied Surface Science, 608, pp. 155203, 2023.

Fajrial, A. K., Saputro, A. G., Agusta, M. K., Rusydi, F., Nugraha, and Dipojono, H. K., First Principles Study of Oxygen Molecule Interaction with the Graphitic Active Sites of a Boron-Doped Pyrolyzed Fe-N-C Catalyst, Physical Chemistry Chemical Physics, 19(34), pp. 23497-23504, 2017.

Dipojono, H. K., Saputro, A. G., Aspera, S. M., and Kasai, H., Density Functional Theory Study on the Interaction of O2 Molecule with Cobalt-(6)Pyrrole Clusters, Japanese Journal of Applied Physics, 50, pp. 1-5, 2011.

Saputro, A. G., Rusydi, F., Kasai, H., and Dipojono, H. K., Oxygen Reduction Reaction on Cobalt-(6)Pyrrole Cluster: Density Functional Theory Study, Journal of the Physical Society of Japan, 81(3), pp. 2-6, 2012.

Saputro, A. G., Kasai, H., Asazawa, K., Kishi, H., and Tanaka, H., Comparative Study on the Catalytic Activity of the TM-N2 Active Sites (Mn, Fe, Co, Ni) in the Oxygen Reduction Reaction: Density Functional Theory Study, Journal of the Physical Society of Japan, 82(11), pp. 1-11, 2013.

Saputro, A. G. and Kasai, H., Density Functional Theory Study on the Interaction of O2 and H2O2 Molecules with the Active Sites of Cobalt-Polypyrrole Catalyst, Journal of the Physical Society of Japan, 83(2), pp. 1-11, 2014.

Saputro, A. G. and Kasai, H., Oxygen Reduction Reaction on Neighboring Fe-N4and Quaternary-N Sites of Pyrolized Fe/N/C Catalyst, Physical Chemistry Chemical Physics, 17(5), pp. 3059-3071, 2015.

Dipojono, H. K., Saputro, A. G., Fajrial, A. K., Agusta, M. K., Akbar, F. T., Rusydi, F., and Wicaksono, D. H. B., Oxygen Reduction Reaction Mechanism on a Phosporus-Doped Pyrolyzed Graphitic Fe/N/C Catalyst, New Journal of Chemistry, 43(28), pp. 11408-11418, 2019.

Dipojono, H. K., Saputro, A. G., Belkada, R., Nakanishi, H., Kasai, H., David, M., and Sy Dy, E., Adsorption of O2 on Cobalt-n)Pyrrole Molecules from First-Principles Calculations, Journal of the Physical Society of Japan, 78(9), pp. 1-7, 2009.

McEwen, J.-S., Bray, J. M., Wu, C., and Schneider, W. F., How Low Can You Go? Minimum Energy Pathways for O2 Dissociation on Pt(111), Phys. Chem. Chem. Phys., 14(48), pp. 16677-16685, 2012.

Eichler, A. and Hafner, J., Molecular Precursors in the Dissociative Adsorption of O2 on Pt(111), Phys. Rev. Lett., 79(22), pp. 4481-4484, 1997.

Bocquet, M.-L., Cerd J., and Sautet, P., Transformation of Molecular Oxygen on a Platinum Surface: A Theoretical Calculation of STM Images, Phys. Rev. B, 59(23), pp. 15437-15445, 1999.

Jennings, P. C., Aleksandrov, H. A., Neyman, K. M., and Johnston, R. L., A DFT Study of Oxygen Dissociation on Platinum Based Nanoparticles, Nanoscale, 6(2), pp. 1153-1165, 2014.

Downloads

Published

2022-12-28

Issue

Section

Articles