Metagenomic Analysis of Bacterial Community in the Gut of Blister Beetle Mylabris pustulata Thunberg

Authors

  • Achmad Dinoto Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
  • Zahra Noviana Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
  • Oscar Efendy Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
  • Heddy Julistiono Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2022.54.1.10

Keywords:

16S rRNA, blister beetles, gut bacteria, Mylabris pustulata, metagenomic, next generation sequencing

Abstract

Blister beetles are an important object of study in the field of agriculture and health. Despite being known to be important for the host animal, the gut bacteria of blister beetles have not been investigated deeply. This study aimed to provide the first initial description of the gut bacterial community of Mylabris pustulata as one species of blister beetles, based on a culture-independent technique. Adult blister beetles of the same colony were sampled and confirmed as Mylabris pustulata Thunberg. The gut content was used in high throughput sequencing, targeting the V3-V4 regions of 16S rRNA gene, and in the cultivation of resident bacteria. The results showed that higher bacterial richness was present in the gut communities when compared to the grown bacterial culture. Proteobacteria was confirmed as the most abundant phylum in the gut of M. pustulata, whereby most reads belonged to the class of Gammaproteobacteria. The dominant bacterial genera were determined as Enterobacter, Acinetobacter, Enterococcus, Klebsiella, and Pseudomonas. In addition, our cultivation attempts led to successful isolation of members of Klebsiella and Enterococcus. The subject of this study could be explored further to find the potential roles of these microbiota in the gut of the specific beetles and their bioprospects.

References

Ghoneim, K. Agronomic and Biodiversity Impacts of the Blister Beetles (Coleoptera: Meloidae) in the World: A Review. International Journal of Agricultural Science Research. 2, pp. 21?36, 2013.

Ghoneim, K. Cantharidin Toxicosis to Animal and Human in the World: A Review. Standard Research Journal of Toxicology and Environmental Health Sciences. 1, pp. 1?16, 2013.

Wang, G.-S. Medical Uses of Mylabris in Ancient China and Recent Studies. Journal of Ethnopharmacology, 26, pp. 147?162, 1989.

Sami, A.J., Anwar, M.A., Rehman, F.U. & Shakoori A.R., Digestive Cellulose Hydrolyzing Enzyme Activity (Endo- ?-1,4- D-Glucanase) in the Gut and Salivary Glands of Blister Beetle, Mylabris pustulata. Pakistan Journal of Zoology, 43, pp. 393?401, 2011.

Yun, J.H., Roh, S.W., Whon, T.W., Jung, M.-J., Kim, M.-S., Park, D.-S, Yoon, C., Nam, Y.-D., Kim, Y.-J., Choi, J.-H, Kim, J.-Y., Shin, N.-R., Kim, S.-H., Lee, W-J. & Bae, J.W., Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host. Applied and Environmental Microbiology, 80, pp. 5254?5264, 2014.

Jing, T.Z., Qi, F.H. & Wang, Z.Y. Most Dominant Roles of Insect Gut Bacteria: Digestion, Detoxification, or Essential Nutrient Provision? Microbiome, 8, pp. 38, 2020.

Habineza, P., Muhammad, A., Ji, T., Xiao, R., Yin, X., Hou, Y. & Shi, Z., The Promoting Effect of Gut Microbiota on Growth and Development of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by Modulating Its Nutritional Metabolism. Frontiers in Microbiology, 10, pp. 1212, 2019.

Murato?lu, H., Sezen, K. & Demirba?, Z. Determination and Pathogenicity of the Bacterial Flora Associated with the Spruce Bark Beetle, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae). Turkish Journal of Biology, 35, pp. 9?20, 2011.

Saati-Santamar, Z., Rivas, R., Kola?ik, M. & Garc-Fraile, P., A New Perspective of Pseudomonas-Host Interactions: Distribution and Potential Ecological Functions of the Genus Pseudomonas within the Bark Beetle Holobiont. Biology, 10, pp. 164, 2021.

Govindarajulu, S.N., Varier, K.M., Jayamurali, D., Liu, W. Chene, J., Manoharan, N., Li, Y. & Gajendran, B., Insect Gut Microbiome and Its Applications. In: de Mandal S, Bhatt P, editors. Recent Advancements in Microbial Diversity. London: Academic Press; 2020. p. 379?395, 2020.

Douglas, A.E. Multiorganismal Insects: Diversity and Function of Resident Microorganisms. Annual Review of Entomology, 60, pp. 17?34, 2015.

Maleki-Ravasan, N., Ahmadi, N., Soroushzadeh, Z., Raz, A.A., Zakeri, S. & Djadid, N.D., New Insights Into Culturable and Unculturable Bacteria across the Life History of Medicinal Maggots Lucilia sericata (Meigen) (Diptera: Calliphoridae). Frontiers in Microbiology, 11, pp. 505, 2020.

Colman, D.R., Toolson, E.C. & Takacs-Vesbach, C.D. Do Diet and Taxonomy Influence Insect Gut Bacterial Communities? Molecular Ecology. 21, pp. 5124?5137, 2012.

Liu, B., Huan, H., Gua, H. et al. Dynamics of a Microbial Community during Ensiling and upon Aerobic Exposure in Lactic Acid Bacteria Inoculation-Treated and Untreated Barley Silages. Bioresource Technology, 273, pp. 212?219, 2019.

McMurdie, P.J., & Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 8, pp. e61217, 2013.

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. & Ellison, A.M., Rarefaction and Extrapolation with Hill Numbers: A Framework for Sampling and Estimation in Species Diversity Studies. Ecological Monographs, 84, pp. 45?67, 2014.

Hsieh, T.C., Ma, K.H. & Chao, A. INEXT: An R Package for Rarefaction and Extrapolation of Species Diversity (Hill Numbers). Methods in Ecology and Evolution. 7, pp. 1451?1456, 2016.

Wickham, H. Ggplot2: Elegant Graphics for Data Analysis [Internet]. New York: Springer-Verlag; 2016., 2016.

Dinoto, A., Handayani, R., Setianingrum, N. & Julistiono, H., Culturable Gut Bacteria of Ikan Batak (Neolissochilus sumatranus Weber & de Beaufort, 1916) Collected in Toba Samosir, Indonesia. Biodiversitas, 21, pp. 4483?4488, 2020.

Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H. & Chun, J., Introducing EzBioCloud: A Taxonomically United Database of 16S rRNA Gene Sequences and Whole-Genome Assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, pp. 1613?1617, 2017.

Deng, W., Nickle, D.C., Learn, G.H., Maust, B. & Mullins, J.I., ViroBLAST: A Stand-Alone BLAST Web Server for Flexible Queries of Multiple Databases and User?s Datasets, Bioinformatics, 23, pp. 2334?2336, 2007.

Zarraonaindia, I., Smith, D.P. & Gilbert, J.A. Beyond the Genome: Community-Level Analysis of the Microbial World. Biology and Philosophy, 28, pp. 261?282, 2013.

Raju, A.J.S., Rani, B.U., Sulakshana, M., Kumar, B.D., Rao, M.M. & Rao, C.P., A Study on Morphology and Feeding Ecology of the Blister a Study on Morphology and Feeding Ecology of the Blister Beetle, Mylabris pustulata Thunberg (Coleoptera : Meloidae). Advances in Pollen Spore Research, XXXIV, pp. 127?137, 2016.

Vivero, R.J., Villegas-Plazas, M., Cadavid-Restrepo, G.E., Moreno-Herrera, C.X, Uribe, A.I. & Junca, H., Wild Specimens of Sand Fly Phlebotomine Lutzomyia evansi, Vector of Leishmaniasis, Show High Abundance of Methylobacterium and Natural Carriage of Wolbachia and Cardinium Types in the Midgut Microbiome. Scientific Reports, 9, pp. 17746, 2019.

MsangoSoko, K., Gandotra, S., Chandel, R.K., Sharma, K., Ramakrishinan, B. & Subramanian, S., Composition and Diversity of Gut Bacteria Associated with the Eri Silk Moth, Samia ricini, (Lepidoptera: Saturniidae) as Revealed by Culture-Dependent and Metagenomics Analysis. Journal of Microbiology and Biotechnology, 30, pp. 1367?1378, 2020.

Nobles, S., & Jackson, C.R. Effects of Life Stage, Site, and Species on the Dragonfly Gut Microbiome. Microorganisms, 8, pp. 183, 2020.

Liu, G., Zheng, X., Long, H., Rao, Z., Cao, L. & Han, R., Gut Bacterial and Fungal Communities of the Wild and Laboratory-Reared Thitarodes Larvae, Host of the Chinese Medicinal Fungus Ophiocordyceps sinensis on Tibetan Plateau. Insects, 12, pp. 327, 2021.

Sandaa, R.A., Torsvik, V., Enger, , Daae, F.L., Castberg, T. & Hahn, D., Analysis of Bacterial Communities in Heavy Metal-Contaminated Soils at Different Levels of Resolution. FEMS Microbiology Ecology, 30, pp. 237?251, 1999.

Roesch, L.F.W., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K.M., Kent, A.D., Daroub, S.H., Camargo, F.A.O., Farmerie, W.G. & Triplett, E.W., Pyrosequencing Enumerates and Contrasts Soil Microbial Diversity. ISME Journal, 1, pp. 283?290, 2007.

Overmann, J. Chapter 7. Principles of Enrichment, Isolation, Cultivation, and Preservation of Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., et al., editors. The Prokaryotes: Prokaryotic Biology and Symbiotic Associations. Springer Berlin Heidelberg, 2013. pp. 149?207, 2013.

Stewart, E.J. Growing Unculturable Bacteria. Journal of Bacteriology, 194, pp. 4151?4160, 2012.

Overmann, J., Abt, B. & Sikorski, J. Present and Future of Culturing Bacteria. Annual Review of Microbiology, 71, pp. 711?730, 2017.

Noviana, Z. Structure and Composition of Bacterial Communities in the Rhizosphere and Roots of Hypericum Species, PhD Dissertation, Technische Universit Braunschweig, Braunschweig. 2021.

Behar, A., Yuval, B. & Jurkevitch, E. Gut Bacterial Communities in the Mediterranean Fruit Fly (Ceratitis capitata) and Their Impact on Host Longevity. Journal of Insect Physiology, 54, pp. 1377?1383, 2008.

Prabhakar, C.S., Sood, P., Kapoor, V., Kanwar, S.S., Mehta, P.K. & Sharma, P.N., Molecular and Biochemical Characterization of Three Bacterial Symbionts of Fruit Fly, Bactrocera tau (Tephritidae: Diptera). Journal of General and Applied Microbiology, 55, pp. 479?487, 2009.

Thaochan, N., Drew, R.A.I., Hughes, J.M., Vijaysegaran, S. & Chinajariyawong, A., Alimentary Tract Bacteria Isolated and Identified with API-20E and Molecular Cloning Techniques from Australian Tropical Fruit Flies, Bactrocera cacuminata and B. tryoni. Journal of Insect Science, 10, pp. 131, 2010.

Wang, H., Jin, L. & Zhang, H. Comparison of the Diversity of the Bacterial Communities in the Intestinal Tract of Adult Bactrocera dorsalis from Three Different Populations. Journal of Applied Microbiology, 110, pp. 1390?1401, 2011.

Khan, M., Mahin, A.A., Pramanik, M.K. & Akter, H., Identification of Gut Bacterial Community and Their Effect on the Fecundity of Pumpkin Fly, Bactrocera tau (Walker). Journal of Entomology, 11, pp. 68?77, 2014.

Naaz, N., Choudhary, J.S., Prabhakar, C.S., Moanaro & Maurya, S., Identification and Evaluation of Cultivable Gut Bacteria Associated with Peach Fruit Fly, Bactrocera zonata (Diptera: Tephritidae). Phytoparasitica, 44, pp. 165?176, 2016.

Raza, M.F., Yao, Z., Bai, S., Cai, Z. & Zhang, H., Tephritidae Fruit Fly Gut Microbiome Diversity, Function and Potential for Applications. Bulletin of Entomological Research, 110, pp. 423?437, 2020.

Kim, J.M., Choi, M.Y., Kim, J.W., Lee, S.A., Ahn, J.H., Song, J., Kim, S.H. & Weon, H.Y., Effects of Diet Type, Developmental Stage, and Gut Compartment in the Gut Bacterial Communities of Two Cerambycidae Species (Coleoptera). Journal of Microbiology, 55, pp. 21?30, 2017.

Ma, M., Chen, X., Li, S., Luo, J., Han, R. & Xu, L., Composition and Diversity of Gut Bacterial Community in Different Life Stages of a Leaf Beetle Gastrolina depressa. Microbial Ecology, 2022.

Lauzon, C.R., Sjogren, R.E. & Prokopy, R.J. Enzymatic Capabilities of Bacteria Associated with Apple Maggot Flies: A Postulated Role in Attraction. Journal of Chemical Ecology, 26, pp. 953?967, 2000.

Anand, A.A.P., Vennison, S.J., Sankar, S.G., Prabhu, D.I.G., Vasan, P.T, Raghuraman, T., Geoffrey, C.J. & Vendan, S.E., Isolation and Characterization of Bacteria from the Gut of Bombyx mori that Degrade Cellulose, Xylan, Pectin and Starch and Their Impact on Digestion. Journal of Insect Science, 10, pp. 107, 2010.

Vilanova, C., Baixeras, J., Latorre, A. & Porcar, M., The Generalist inside the Specialist: Gut Bacterial Communities of Two Insect Species Feeding on Toxic Plants are Dominated by Enterococcus sp. Frontiers in Microbiology, 7, pp. 1005, 2016.

Engel, P., Moran, N.A., The Gut Microbiota of Insects - Diversity in Structure and Function. FEMS Microbiology Reviews, 37, pp. 699?735, 2013.

Morales-Jimez, J., Ziga, G., Ramez-Saad, H.C. & Herndez-Rodruez, C., Gut-Associated Bacteria throughout the Life Cycle of the Bark Beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and Their Cellulolytic Activities. Microbial Ecology, 64, pp. 268?278, 2012.

Hu, M., Li, X., Li, Z., Liu, B., Yang, Z. & Tian, Y., Ochrobactrum teleogrylli sp. Nov., a Pesticide-Degrading Bacterium Isolated from the Insect Teleogryllus occipitalis Living in Deserted Cropland. International Journal of Systematic and Evolutionary Microbiology, 70, pp. 2217?2225, 2020.

Leite-Mondin, M., DiLegge, M.J., Manter, D.K., Weir, T. L., Silva-Filho, M.C. & Vivanco, J.M., The Gut Microbiota Composition of Trichoplusia ni Is Altered by Diet and May Influence Its Polyphagous Behavior. Scientific Reports, 11, pp. 5786, 2021.

Voirol, L.R.P., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N.E., Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Frontiers in Microbiology, 9, pp. 556, 2018.

Kucuk, R.A. Gut Bacteria in the Holometabola: A Review of Obligate and Facultative Symbionts. Journal of Insect Science, 20, pp. 1?12, 2020.

Piel, J., Her, I. & Hui, D. Evidence for A Symbiosis Island Involved in Horizontal Acquisition of Pederin Biosynthetic Capabilities by the Bacterial Symbiont of Paederus fuscipes Beetles. Journal of Bacteriology, pp. 1281?1286, 2004.

Piel, J., Butzke, D., Fusetani, N., Hui, D., Platzer, M., Wen, G. & Matsunaga, S., Exploring the Chemistry of Uncultivated Bacterial Symbionts: Antitumor Polyketides of the Pederin Family. Journal of Natural Product, 68, pp. 472?479, 2005.

de Graaf, F.K., Tieze, G.A., Bonga, S.W. & Stouthamer, A.H., Purification and Genetic Determination of Bacteriocin Production in Enterobacter cloacae. Journal of Bacteriology, 95, pp. 631?640, 1968.

Mandal, S.M., Sharma, S., Pinnaka, A.K., Kumari, A. & Korpole, S., Isolation and Characterization of Diverse Antimicrobial Lipopeptides Produced by Citrobacter and Enterobacter. BMC Microbiology, 13, pp. 152, 2013.

Fyhrquist, N., Ruokolainen, L., Suomalainen, A., Lehtimi, S., Veckman, V., Vendelin, J., Karisola, P., Lehto, M., Savinko, T., Jarva, H., Kosunen, T.U., Corander, J., Auvinen, P., Paulin, L., von Hertzen, L., Laatikainen, T., Mel M., Haahtela, T., Greco, D., Hanski, I. & Alenius, H., Acinetobacter Species in the Skin Microbiota Protect against Allergic Sensitization and Inflammation. Journal of Allergy and Clinical Immunology, 134, pp. 1301?1309, 2014.

Lagos, R., Tello, M., Mercado, G., Garc, V. & Monasterio, O., Antibacterial and Antitumorigenic Properties of Microcin E492, a Pore-Forming Bacteriocin. Current Pharmaceutical Biotechnology, 10, pp. 74?85, 2009.

Cardozo, V.F., Oliveira, A.G., Nishio, E.K., Perugini, M.R., Andrade, C.G., Silveira, W.D., Dur, N., Andrade, G., Kobayashi, R.K. & Nakazato, G., Antibacterial Activity of Extracellular Compounds Produced by a Pseudomonas Strain against Methicillin-Resistant Staphylococcus aureus (MRSA) Strains. Annals of Clinical Microbiology and Antimicrobials, 12, pp. 12, 2013.

Peterson, J. Bacterial Pathogenesis. In: Baron S, editor. Medical Microbiology. 4th ed. Galveston: University of Texas Medical Branch at Galveston; 1996, www.ncbi.nlm.nih.gov/books/NBK8526/.

Downloads

Published

2022-10-18

How to Cite

Dinoto, A., Noviana, Z. ., Efendy, O. ., & Julistiono, H. . (2022). Metagenomic Analysis of Bacterial Community in the Gut of Blister Beetle Mylabris pustulata Thunberg. Journal of Mathematical and Fundamental Sciences, 54(1), 190-210. https://doi.org/10.5614/j.math.fund.sci.2022.54.1.10

Issue

Section

Articles