Bioinformatic Analysis Strategy in Restriction Enzyme Selection for Indonesian Panulirus homarus Identification by PCR-RFLP

Authors

  • Indriatmoko Indriatmoko Graduate Program in Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
  • Adi Pancoro Research Expertise Group of Genetics and Molecular Biotechnology, School of Life Science and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2023.55.2.4

Keywords:

bioinformatics, identification, PCR-RFLP, restriction enzymes, spiny lobster

Abstract

The spiny lobster (Panulirus homarus) is a valuable fishery commodity in Indonesia, particularly in its juvenile life form. However, identifying the early life forms of the spiny lobster can be challenging, as it exhibits similar morphological features compared to the juveniles of other Panilurid lobsters. Molecular-based identification, specifically DNA sequencing, is the best method for species identification, but it requires advanced instruments and is costly. An alternative method is proposed here, using the PCR-RFLP technique, which is low-cost, rapid, and has standard instrumentation requirements. The challenge with this method is selecting the appropriate restriction enzyme to determine the targeted species? identity. This study proposes using the REfind (https://github.com/indriatmoko07/REfind), R package to select the best restriction enzyme for identifying P. homarus, applicable to other species. The bioinformatics workflow used in this study successfully identified BseSI or BmgI as the most suitable restriction enzymes among 739 restriction enzymes to differentiate P. homarus from other Panilurid species. This result was validated by employing a wet lab test using the BseSI enzyme and successfully validated the bioinformatics result. These findings may be useful for biologists in conducting various studies that require rapid, low-cost, and identification of specific species in the future.

References

Austen, G.E., Bindemann, M., Griffiths, R.A. & Roberts, D.L., Species Identification by Experts and Non-Experts: Comparing Images from Field Guides, Scientific Reports, 6(1), pp. 1-7, 2016.

Slade, E.M., Kirwan, L., Bell, T., Philipson, C.D., Lewis, O.T. & Roslin, T., The Importance of Species Identity and Interactions for Multifunctionality Depends on How Ecosystem Functions are Valued, Ecology, 98(10), pp. 2626-2639, 2017.

Wibowo, A., Panggabean, A.S., Zamroni, A., Priatna, A. & Yusuf, H.N., Using DNA Barcode to Improve the Identification of Marine Fish Larvae, Case Study Coastal Water Near Jakarta and Banda Sea, Indonesia, Indonesian Fisheries Research Journal, 24(1), pp. 23-30, 2018.

Barrett, R.D. & Hebert, P.D., Identifying Spiders Through DNA Barcodes, Canadian Journal of Zoology, 83(3), pp. 481-491, 2005.

Bingpeng, X., Heshan, L., Zhilan, Z., Chunguang, W., Yanguo, W. & Jianjun, W., DNA Barcoding for Identification of Fish Species in the Taiwan Strait, PLoS One, 13(6), e0198109, 2018.

Jamaluddin, J.A.F., Mohammed Akib, N.A., Ahmad, S.Z., Abdul Halim, S.A.A., Abdul Hamid, N.K. & Mohd Nor, S.A., DNA Barcoding of Shrimps from a Mangrove Biodiversity Hotspot, Mitochondrial DNA Part A, 30(4), pp. 618-625, 2019.

Nagy, Z.T., Sonet, G., Glaw, F. & Vences, M., First Large-Scale DNA Barcoding Assessment of Reptiles in the Biodiversity Hotspot of Madagascar, based on Newly Designed COI Primers, PLoS One, 7(3), e34506, 2012.

Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E., Towards Next?Generation Biodiversity Assessment using DNA Metabarcoding, Molecular Ecology, 21(8), pp. 2045-2050, 2012.

Blackman, R., Bennucci, M., Donnelly, R., Hfling, B., Harper, L.R., Sellers, G. & Lawson-Handley, L., Simple, Sensitive and Species-Specific Assays for Detecting Quagga and Zebra Mussels (Dreissena rostriformis bugensis and D. polymorpha) using Environmental DNA, Management of Biological Invasions, 11(2), pp. 218-236, 2020.

Paoletti, M., Mattiucci, S., Colantoni, A., Levsen, A., Gay, M. & Nascetti, G., Species-Specific Real Time-PCR Primers/Probe Systems to Identify Fish Parasites of the Genera Anisakis, Pseudoterranova and Hysterothylacium (Nematoda: Ascaridoidea), Fisheries Research, 202, pp. 38-48, 2018.

Wilcox, T.M., Carim, K.J., McKelvey, K.S., Young, M.K. & Schwartz, M.K., The Dual Challenges of Generality and Specificity when Developing Environmental DNA Markers for Species and Subspecies of Oncorhynchus, PLoS One, 10(11), e0142008, 2015.

Guan, F., Jin, Y.T., Zhao, J., Xu, A.C. & Luo, Y.Y., A PCR Method that Can be Further Developed into PCR-RFLP Assay for Eight Animal Species Identification, Journal of analytical methods in chemistry, 5890140, 2018.

Wilwet, L., Jeyasekaran, G., Shakila, R.J., Sivaraman, B. & Padmavathy, P., A Single Enzyme PCR-RFLP Protocol Targeting 16S rRNA/tRNAval Region to Authenticate Four Commercially Important Shrimp Species in India, Food Chemistry, 239, pp. 369-376, 2018.

Diguta, C.F., Vincent, B., Guilloux-Benatier, M., Alexandre, H. & Rousseaux, S., PCR ITS-RFLP: A Useful Method For Identifying Filamentous Fungi Isolates on Grapes, Food Microbiology, 28(6), pp. 1145-1154, 2011.

Marty, E., Buchs, J., Eugster-Meier, E., Lacroix, C. & Meile, L., Identification of Staphylococci and Dominant Lactic Acid Bacteria in Spontaneously Fermented Swiss Meat Products using PCR-RFLP, Food Microbiology, 29(2), pp. 157-166, 2012.

Priyambodo, B., Jones, C.M. & Sammut, J., Assessment of the Lobster Puerulus (Panulirus homarus and Panulirus ornatus, Decapoda: Palinuridae) Resource of Indonesia and its Potential for Sustainable Harvest for Aquaculture, Aquaculture, 528, 735563, 2020.

Jones, C.M., Le Anh, T. & Priyambodo, B., Lobster Aquaculture Development in Vietnam and Indonesia. In Lobsters: Biology, Fisheries and Aquaculture, Springer, pp. 541-570, 2019.

Suman, A., Pane, A.R.P. & Panggabean, A.S., Fishing, Size Structure and Exploitation Rate for Scalopped Spiny Lobster (Panulirus homarus) and Pronghorn Spiny Lobster (Panulirus penicillatus) in Gunung Kidul and Adjacent Waters, JPPI, 25(3), pp. 147-160, 2019.

Chow, S., Suzuki, N., Imai, H. & Yoshimura, T., Molecular Species Identification of Spiny Lobster Phyllosoma Larvae of the Genus Panulirus from the Northwestern Pacific, Marine Biotechnology, 8(3), pp. 260-267, 2006.

Dharani, G., Maitrayee, G.A., Karthikayalu, S., Kumar, T.S., Anbarasu, M. & Vijayakumaran, M., Identification of Panulirus homarus Puerulus Larvae by Restriction Fragment Length Polymorphism of Mitochondrial Cytochrome Oxidase I Gene, Pakistan Journal of Biological Sciences, 12(3), 281, 2009.

Winter, D.J., Rentrez: An R Package for the NCBI eUtils API, PeerJ. e3179v2, 2017.

Thompson, J.D., Gibson, T.J. & Higgins, D.G., Multiple Sequence Alignment using ClustalW and ClustalX, Current protocols in bioinformatics, (1), pp. 2-3, 2003.

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K., MEGA X: Molecular Evolutionary Genetics Analysis Across Computing Platforms, Molecular Biology and Evolution, 35(6), 1547, 2018.

Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R., DNA Primers for Amplification of Mitochondrial Cytochrome C Oxidase Subunit I from Diverse Metazoan Invertebrates, Mol Mar Biol Biotechnol, 3, 294-299, 1994.

Ding, Q. & Zhang J., seqRFLP: Simulation and Visualization of Restriction Enzyme Cutting Pattern from DNA Sequences, R package version 1.0.1, 2012. http://cran.r-project.org/web/packages/ seqRFLP/index.html accessed November 4th, 2021.

Franso, E., Gomes, F. & Arias, M.C., A Protocol for Isolating Insect Mitochondrial Genomes: A Case Study of NUMT in Melipona Flavolineata (Hymenoptera: Apidae), Mitochondrial DNA Part A, 27(4), pp. 2401-2404, 2016.

Xiao, B.H., Zhang, W., Yao, W., Liu, C.W. & Liu, L., Analysis of the Complete Mitochondrial Genome Sequence of Palinura homarus, Mitochondrial DNA Part B, 2(1), pp. 60-61, 2017.

DeSalle, R., Schierwater, B. & Hadrys, H. MtDNA: The Small Workhorse of Evolutionary Studies, Frontiers in Bioscience, 22, pp. 873-887, 2017.

Colihueque, N., Estay, F.J., Crespo, J.E., Arriagada, A., Baessolo, L., Canales-Aguirre, C.B. & Carrasco, R., Genetic Differentiation and Origin of Naturalized Rainbow Trout Populations from Southern Chile, Revealed by the mtDNA Control Region Marker, Frontiers in Genetics, 10, 1212, 2019.

Yang, T., Yang, S., Meng, W., Gao, T. & Zhang, X., Genetic Evaluation of Chinese Shrimp (Fenneropenaeus Chinensis) Stock Enhancement in the Yellow Sea and Bohai Sea based on Mitochondrial DNA Control Region, Aquaculture International, 28(2), pp. 603-614, 2020.

Gammage, P.A., Viscomi, C., Simard, M.L., Costa, A.S., Gaude, E., Powell, C.A. & Minczuk, M., Genome Editing in Mitochondria Corrects a Pathogenic mtDNA Mutation in Vivo, Nature Medicine, 24(11), pp. 1691-1695, 2018.

Pranata, B., Fadjar, M., Iranawati, F. & Toha, A.H., Phylogeny of the Spiny Lobster Panulirus Versicolor in Cenderawasih Bay, Papua, Indonesia, Aquaculture, Aquarium, Conservation & Legislation, 11(4), pp. 1015-1024, 2018.

David Clark, P. & Nanette Pazdernik, J., Manipulation of Nucleic Acids, in Molecular Biology (Second Edition), Academic Press, pp. 125-161, 2013.

Senevirathna, J.D.M. & Munasinghe, D.H.N., Genetic Diversity and Population Structure of Panulirus homarus Populations of Southern Sri Lanka and South India Revealed by the Mitochondrial COI Gene Region, Biological Medical Sciencews (FBMS-2014), Bangkok, 2014.

Permana, G.N., Slamet, B., Permana, B.A., Dewi, A.K. & Mahardika, G.N., Population Genetic Structure of Spiny Lobsters, Panulirus homarus and Panulirus ornatus, in the Indian Ocean, Coral Triangle, and South China Sea, Indonesian Aquaculture Journal, 14(1), pp. 7-14, 2019.

Lavery, S.D., Farhadi, A., Farahmand, H., Chan, T.Y. & Azhdehakoshpour, A., Evolutionary Divergence of Geographic Subspecies within the Scalloped Spiny Lobster Panulirus homarus (Linnaeus 1758), PLoS One, 9(6), e97247, 2014.

Downloads

Published

2024-03-16

How to Cite

Indriatmoko, I., & Pancoro, A. (2024). Bioinformatic Analysis Strategy in Restriction Enzyme Selection for Indonesian Panulirus homarus Identification by PCR-RFLP. Journal of Mathematical and Fundamental Sciences, 55(2), 165-179. https://doi.org/10.5614/j.math.fund.sci.2023.55.2.4

Issue

Section

Articles