Conditioned Medium of IGF1-Induced Human Wharton?s Jelly Mesenchymal Stem Cells Effects on Sox9 Gene Expression and Level of COL2 and IL1? in Osteoarthritic Chondrocytes

Authors

  • Wahyu Widowati Faculty of Medicine, Maranatha Christian University, Jalan Surya Sumantri No. 65, Bandung, West Java 40164 Indonesia
  • Hanna Sari Widya Kusuma Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jalan Babakan Jeruk II No. 9, Bandung, West Java 40163 Indonesia
  • Rizal Azis Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jalan Babakan Jeruk II No. 9, Bandung, West Java 40163 Indonesia
  • The Fransiska Eltania Faculty of Medicine, Maranatha Christian University, Jalan Surya Sumantri No. 65, Bandung, West Java 40164 Indonesia
  • Faradhina Salfa Nindya Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jalan Babakan Jeruk II No. 9, Bandung, West Java 40163 Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2024.56.3.1

Keywords:

collagen 2, IGF-1, IL-1?, sox9, WJMSCs

Abstract

Wharton?s jelly mesenchymal stem cells (WJMSCs) hold promises for treating osteoarthritis (OA) due to their great capacity for regeneration and their accessibility. However, obstacles like poor cell survival and differentiation prevent them from being used in transplants. Thus, this study examined WJMSCs? Conditioned Medium (CM) (WJMSCs-CM) for OA treatment. In order to determine how well IL1?-induced chondrocyte cells (IL1?-CHON002) heal OA-damaged cells, they were treated with both IGF1-induced and uninduced WJMSCs-CM. Key parameters measured were IL1?, Sox9 and COL2. The STRING database was explored to evaluate the proteins contained in WJMSCs-CM and to see their interactions and CM potential in OA exposure. The STRING database indicates WJMSCs-CM to possess the ability to manage OA because of the growth factors they contain, which raise the expression of cartilage marker genes. The results indicated that 15% WJMSCs-CM with 150 ng/mL IGF1 had the highest Sox9 expression, significant reduction in pro-inflammatory mediators, and an increase in COL2 levels. Additionally, 14 days of treatment resulted in better outcomes compared to 7 days. CM from WJMSCs treated with IGF1 with a concentration of 15% exhibited the highest level for each parameter. Both durations showed difference across parameters, highlighting the potential for OA therapy.

References

Ahmed, U., Anwar, A., Savage, R.S., Costa, M.L., Mackay, N., Filer, A., Raza, K., Watts, R.A., Winyard, P.G., Tarr, J., Haigh, R.C., Thornalley, P.J. & Rabbani, N., Biomarkers of Early Stage Osteoarthritis, Rheumatoid Arthritis and Musculoskeletal Health, Nature, 5(1), pp. 1-7, 2015.

Smolenska, Z., Kaznowska, Z., Zaro, D. & Simmonds, H.A., Effect of Methotrexate on Blood Purine and Pyrimidine Levels in Patients with Rheumatoid Arthritis, Rheumatology, 38(10), pp. 997-1002, 1999.

Loeser, R.F., Goldring, S.R., Scanzello, C.R. & Goldring, M.B., Osteoarthritis: A Disease of the Joint as An Organ, Arthritis and rheumatism, 64(6), pp. 1697-1707, 2013.

Kremers, H.M., Nicola, P., Crowson, C.S., Fallon, W.M. & Gabriel, S.E., Therapeutic Strategies in Rheumatoid Arthritis Over A 40-year Period, The Journal of Rheumatology, 31(12), pp. 2366-2373, 2004.

Leong, D.J., Choudhury, M., Hanstein, R., Hirsh, D.M., Kim, S.J., Majeska, R.J., Schaffler, M.B., Hardin, J.A., Spray, D.C., Goldring, M.B., Cobelli, N.J. & Sun, H.B., Green Tea Polyphenol Treatment is and Palliative in A Mouse Posttraumatic Osteoarthritis Model, Arthritis Research & Therapy, 16, pp. 1-11, 2014.

Vanlauwe, J., Saris, D.B.F., Victor, J., Almqvist, K.F., Bellemans, J. & Luyten, F.P., The American Journal of Sports Medicine Five-year Outcome of Characterized Chondrocyte Implantation Versus Microfracture for Symptomatic Cartilage Defects of the Knee, The American Journal of Sports Medicine, 39(12), pp. 2566-2573, 2011.

Nam, Y., Rim, Y.A., Lee, J. & Ju, J.H., Current Therapeutic Strategies for Stem Cell?based Cartilage Regeneration, Stem Cells International, 2018(1), 8490489, 2018.

Pandey, V., Madi, S. & Gupta, P., The Promising Role of Autologous and Allogeneic Mesenchymal Stromal Cells in Managing Knee Osteoarthritis. what is Beyond Mesenchymal Stromal Cells?, Journal of Clinical Orthopaedics and Trauma, 26, 101804, 2022.

Frisbie, D.D., Kisiday, J.D., Kawcak, C.E., Werpy, N.M. & Mcilwraith, C.W., Evaluation of Adipose-derived Stromal Vascular Fraction or Bone Marrow-derived Mesenchymal Stem Cells for Treatment of Osteoarthritis, Journal Of Orthopaedic Research, 27(12), pp. 1675-1680. 2009.

Kon, E., Filardo, G. & Roffi, A., New Trends for Knee Cartilage Regeneration: From Cell-free Scaffolds to Mesenchymal Stem Cells, Current Reviews in Musculoskeletal Medicine, 5, pp. 236-243, 2012.

Aratikatla, A., Maffulli, N., Gupta, M., Potti, I.A., Potty, A.G. & Gupta, A., Wharton?s Jelly and Osteoarthritis of the Knee, British Medical Bulletin, 149(1), pp. 13-31, 2024.

Kim, H.O., Choi, S. & Kim, H., Mesenchymal Stem Cell-derived Secretome and Microvesicles as A Cell-free Therapeutics for Neurodegenerative Disorders, Tissue Engineering and Regenerative Medicine, 10(3), pp. 93-101, 2013.

Pawitan, J.A., Prospect of Stem Cell Conditioned Medium, BioMed Research International, 2014(1), pp. 7-9, 2014.

Rosochowicz, M.A., Lach, M.S., Richter, M., Suchorska, W.M. & Trzeciak, T., Conditioned Medium-is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management?, Stem Cell Reviews and Reports, 19(5), pp. 1185-1213, 2023.

Widowati, W.B.W.J., Nadya, S., Amalia, A., Arumwardana, S. & W, H.S., Antioxidant and Antiaging Activities of Jasminum Sambac Extract, and Its Compounds, Journal of Reports in Pharmaceutical Science, 7(3), pp. 270-285, 2018.

Widowati, W., Wijaya, L., Murti, H., Widyastuti, H., Agustina, D., Ratih, D., Fauziah, N., Sumitro, S.B., Widodo, M.A. & Bachtiar, I., Conditioned Medium from Normoxia WJMSCs (WJMSCs-hypoCM) in Inhibiting Cancer Cell Proliferation, Biomarkers and Genomic Medicine, 7(1), pp. 8-17, 2015.

Tsuchiya, K., Chen, G. & Ushida, T., The Effect of Coculture of Chondrocytes with Mesenchymal Stem Cells on Their Cartilaginous Phenotype in Vitro, Materials Science and Engineering, 24(3), pp. 391-396, 2004.

Widowati, W., Afifah, E., Mozef, T., Sandra, F., Rizal, R. & Amalia, A., Effects of Insulin-like Growth Factor-induced Wharton Jelly Mesenchymal Stem Cells Toward Chondrogenesis in An Osteoarthritis Model, Iranian Journal of Basic Medical Sciences, 21(7), pp. 745-752, 2018.

Afifah, E., Mozef, T., Sandra, F. & Arumwardana, S., Induction of Matrix Metalloproteinases in Chondrocytes by Interleukin IL-1? as An Osteoarthritis Model, Journal of Mathematical and Fundamental Sciences, 51(2), pp. 103-111,2019.

Hellingman, C.A., Koevoet, W. & Osch, G.J.V.M. Van, Can One Generate Stable Hyaline Cartilage from Adult Mesenchymal Stem Cells ? A Developmental Approach, Journal of Tissue Engineering and Regenerative Medicine, 6(10), pp. e1-e11, 2011.

Jayasuriya, C.T., Goldring, M.B., Terek, R. & Chen, Q., Matrilin-3 Induction Of IL-1 Receptor Antagonist is Required for Up-regulating Collagen II And Aggrecan and Down-regulating ADAMTS-5 Gene Expression, Arthritis Research & Therapy, 14, pp. 1-13, 2012.

Leyh, M., Seitz, A., Dselen, L., Schaumburger, J., Ignatius, A., Grifka, J. & Grsel, S., Subchondral Bone Influences Chondrogenic Differentiation and Collagen Production of Human Bone Marrow-derived Mesenchymal Stem Cells and Articular Chondrocytes, Arthritis Research & Therapy, 16(453), pp. 1-18, 2014.

Por, B., Kypriotou, M., Chadjichristos, C., Beauchef, G., Renard, E., Legendre, F., Melin, M., Gueret, S., Hartmann, D.J., Malln-Gerin, F., Jean-Pierre, P., Boumediene, K. & Gala, P., Interleukin-6 ( IL-6 ) and / or Soluble IL-6 Receptor Down-regulation of Human Type II Collagen Gene Expression in Articular Chondrocytes Requires a Decrease of Sp1 ? Sp3 Ratio and of the Binding Activity of Both Factors to the COL2A1 Promoter, Journal of Biological Chemistry, 283(8), pp. 4850-4865, 2008.

Ishiguro, Y., Ishiguro, H. & Miyamoto, H., Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition Up-regulates Interleukin-6 in Cancer Cells and Induces Subsequent Development of Interstitial Pneumonia, Oncotarget, 4(4), pp. 550-559, 2013.

Sundararaj, K., Samuvel, D., Li, Y., Sanders, J., Lopes-Virella, M. & Huang, Y., Interleukin-6 Released from Fibroblasts is Essential for Up-regulation of Matrix Metalloproteinase-1 Expression by U937 Macrophages in Coculture Cross-talking between Fibroblasts and U937 Macrophages Exposed To, Journal of Biological Chemistry, 284(20), pp. 13714-13724, 2009.

Demoor-Fossard, M., Redini, F., Boittin, M. & Pujol, J.P., Expression of Decorin and Biglycan by Rabbit Articular Chondrocytes: Effects of Cytokines and Phenotypic Modulation, Biochimia et Biophysica Acta 1398(2), pp. 179-191, 1998.

Bastiaansen-Jenniskens, Y.M., Koevoet, W., Bart, A.C.W. De, Zuurmond, A., Bank, R.A., Verhaar, J.A.N.A.N., Degroot, J. & Osch, G.J.V.M. Van, TGF ? Affects Collagen Cross-linking Independent of Chondrocyte Phenotype but Strongly Depending on Physical Environment, Tissue Engineering Part A, 14(6), pp. 1059-1066, 2008.

Davidson, R.K., Waters, J.G., Kevorkian, L., Darrah, C., Cooper, A., Donell, S.T. & Clark, I.M, Expression Profiling of Metalloproteinases and Their Inhibitors in Synovium and Cartilage, Arthritis research & therapy, 8, pp. 1-10, 2007.

Dyer, L., Lockyer, P., Wu, Y., Saha, A., Cyr, C. & Moser, M., ... & Patterson, C., BMPER Promotes Epithelial-mesenchymal Transition in the Developing Cardiac Cushions, PLOS One, 10(9), pp. 1-11, 2015.

Forbes, K., Webb, M.A. & Sehgal, I., Growth Factor Regulation of Secreted Matrix Metalloproteinase and Plasminogen Activators in Prostate Cancer Cells, Normal Prostate Fibroblasts and Normal Osteoblasts, Prostate Cancer and Prostatic Diseases, 6(2), pp. 148-153, 2003.

Jinnin, M., Ihn, H., Mimura, Y. & Asano, Y., Matrix Metalloproteinase-1 Up-regulation by Hepatocyte Growth Factor in Human Dermal Fibroblasts Via ERK Signaling Pathway Involves Ets1 and Fli1, Nucleic Acids Research, 33(11), pp. 3540-3549, 2005.

Yoshida, E., Noshiro, M., Kawamoto, T., Tsutsumi, S., Kuruta, Y. & Kato, Y., Direct Inhibition of Indian Hedgehog Expression by Parathyroid Hormone ( PTH )/ PTH-related Peptide and Up-regulation by Retinoic Acid in Growth Plate Chondrocyte Cultures, Experimental Cell Research, 265(1), pp. 64-72, 2001.

Bonnet, C.S. & Walsh, D.A., Osteoarthritis, Angiogenesis and Inflammation, British Society for Rheumatology, 44(1), pp. 7-16, 2005.

Leung, V.Y.L., Gao, B., Leung, K.K.H., Melhado, I.G., Wynn, S.L., Tiffany, Y.K., Dung, N.W.F., Lau, J.Y.B., Mak, A.C.Y., Chan, D. & Cheah, K.S.E., SOX9 Governs Differentiation Stage-specific Gene Expression in Growth Plate Chondrocytes Via Direct Concomitant Transactivation and Repression, PLOS Genetics, 7(11), pp. 1-16, 2011.

Grumbles, R., Howell, D., Wenger, L., Altman, R., Howard, G. & Roos, B., Hepatocyte Growth Factor and Its Actions in Growth, Bone, 19(3), pp. 255-261, 1996.

Kobayashi, A., Amano, O., Tani, Y., Nakamura, T., Iseki, S. & Tomita, K., Hepatocyte Growth Factor Regulates the Proliferation and Differentiation of Cartilage in Developing Forelimb of Mouse Embryos In-vitro, Biomedical Research, 25(5), pp. 219-227, 2004.

Mcgowan, S.E. & Mccoy, D.M., Regulation of Fibroblast Lipid Storage and Myofibroblast Phenotypes During Alveolar Septation in Mice, AJP-Lung Cell Mol Physiol, 307(8), pp. 618-631, 2004.

Murakami, S., Kan, M., Mckeehan, W.L. & Crombrugghe, B. De, Up-regulation of the Chondrogenic Sox9 Gene by Fibroblast Growth Factors is Mediated by the Mitogen-activated Protein Kinase Pathway, PNAS, 97(3), pp. 1113-1118, 2000.

Ouyang, Y., Wang, W., Tu, B., Zhu, Y., Fan, C., & Li, Y., Overexpression of SOX9 Alleviates the Progression of Human Osteoarthritis in Vitro and in Vivo, Drug Design, Development and Therapy, pp. 2833-2842, 2019.

Yang, A., Lu, Y., Xing, J., Lia, Z., Yina, X., Doua, C., Donga, S., Luoa, F., Xiea, Z., Tianyong, H. & Jianzhong, X., IL-8 Enhances Therapeutic Effects of BMSCs on Bone Regeneration via CXCR2-Mediated PI3k / Akt Signaling Pathway, Cellular Physiology and Biochemistry, 48(1), pp. 361-370, 2018.

Berenbaum, F., Osteoarthritis as an in Fl Ammatory Disease (Osteoarthritis Is Not Osteoarthrosis !), Osteoarthritis Research Society International, 21(1), pp. 16-21, 2013.

Wojdasiewicz, P., Poniatowski, A.A. & Szukiewicz, D., The Role of Inflammatory and Anti-inflammatory Cytokines in the Pathogenesis of Osteoarthritis, Mediators of Inflammation, 2014(1), pp. 1-19, 2014.

Ahmed, S., Rahman, A., Hasnain, A., Lalonde, M., Goldberg, V.M. & M. Haqqi, T., Green Tea Polyphenol Epigallocatechin-3-Gallate Inhibits the IL-1 Induced Activity and Expression of Cyclooxygenase-2 and Nitric Oxide Synthase-2 in Human Chondrocytes, Free Radical Biology & Medicine, 33 (8), pp. 1097-1105, 2002.

Singh, R., Ahmed, S., Islam, N., Goldberg, V.M. & Haqqi, T.M., Epigallocatechin-3-Gallate Inhibits Interleukin-1 Induced Expression of Nitric Oxide Synthase and Production of Nitric Oxide in Human Chondrocytes, Arthritis & Rheumatism, 46(8), pp. 2079-2086, 2002.

Molnar, C., Garcia-Trevijano, E., Ludwiczek, O., Talabot, D., Kaser, A., Mato, J., Fritsche, G., Weiss, G., Gabay, C., Avila, M. & Tilg, H., Anti-inflammatory Effects of Hepatocyte Growth Factor: Induction of Interleukin-1 Receptor Antagonist, European Cytokine Network, 15(4), 2004.

Beuningen, H.M. Van, Kraan, P.M. Van Der, Arntz, O.J. & Berg, W.B. Van Den, In Vivo Protection Against Interleukin- 1-induced Articular Cartilage Damage by Transforming Growth Factor-13 , Age-related Differences, Annals of the Rheumatic Diseases, 53(9), pp. 593-600, 1994.

Takahashi, N., Rieneck, K., Van Der Kraan, P., Van Beuningen, H., Vitters, E., Bendtzen, K., Van Den, W. & Berg, Elucidation of IL-1 / TGF-? Interactions in Mouse Chondrocyte Cell Line by Genome-wide Gene Expression, Osteoarthritis Research Society International, 13(5), pp. 426-438, 2005.

Yue, B., Biology of the Extracellular Matrix: An Overview. J. of Glaucoma, 23, pp. S20-S23, 2015.

Yaeger, P.C., Masi, L., Ortiz, J.L.B. De, Tubo, R. & Mcpherson, J.M., Synergistic Action of Transforming Growth Factor- B and Insulin-like Growth Factor-I Induces Expression of Type II Collagen and Aggrecan Genes in Adult Human Articular Chondrocytes, Experimental Cell Research, 237(2), pp. 318-325, 1997.

Grundery, T., Gaissmaiery, C., Fritz, J., Stoop, R., Hortschansky, P., Mollenhauer, J. & Aicheryy, W.K., Bone Morphogenetic Protein ( BMP ) -2 Enhances the Expression of Type II Collagen and Aggrecan in Chondrocytes Embedded in Alginate Beads, Osteoarthritis Research Society International, 12(7), pp. 559-567, 2004.

Calabro, N.E., Kristo, N.J. & Kyriakides, T.R., Biochimica Et Biophysica Acta Thrombospondin-2 and Extracellular Matrix Assembly, Biochimica et Biophysica Acta, 1840(8), pp. 2396-2402, 2014.

Hauss, W.H., Wissler, R.W. & Bauch, H.-J., Effects of oral treatment of SHR with enalapril and hydrochlorothiazide (A light-and electron microscopical study), New Aspects of Metabolism and Behaviour of Mesenchymal Cells during the Pathogenesis of Arteriosclerosis: Under the Protectorate of Rheinisch-Westfische Akademie der Wissenschaften, pp. 199-245, 1991.

Kishi, S., Abe, H., Akiyama, H., Tominaga, T., Murakami, T., Mima, A ... & Doi, T., SOX9 Protein Induces a Chondrogenic Phenotype of Mesangial Cells and Contributes to Advanced Diabetic Nephropathy, The Journal of Biological Chemistry, 286(37), pp. 32162-32169, 2011.

Graham, M.F., Willey, A.M.Y., Adams, J., Yager, D. & Diegelmann, R.F., Interleukin 1 b Down-regulates Collagen and Augments Collagenase Expression in Human Intestinal Smooth Muscle Cells, Gastroenterology, 110(2), pp. 344-350, 1996.

Mengshol, J.A., Vincenti, M.P. & Brinckerhoff, C.E., IL-1 induces collagenase-3 ( MMP-13 ) Promoter Activity in Stably Transfected Chondrocytic Cells : Requirement for Runx-2 and Activation by P38 MAPK and JNK Pathways, Nucleic Acids Research, 29(21), pp. 4361-4372, 2001.

Downloads

Published

2024-12-31