Carbon Nanodots as Complexing Agent in the Formation of Lead(II) Sulfide Thin Films via Direct Deposition of Lead(II) Sulfide Powder


  • Ariswan Physics Education Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Jalan Colombo No. 1, Karangmalang Complex, Yogyakarta, 55281, Indonesia
  • Bian Itsna Ashfa Al Ashfiya Physics Education Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Jalan Colombo No. 1, Karangmalang Complex, Yogyakarta, 55281, Indonesia
  • Anisha Nurcahyati Physics Education Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Jalan Colombo No. 1, Karangmalang Complex, Yogyakarta, 55281, Indonesia
  • Wipsar Sunu Brams Dwandaru Physics Education Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Jalan Colombo No. 1, Karangmalang Complex, Yogyakarta, 55281, Indonesia



CBD technique, Cdots, complexing agent, PbS powder, PbS thin films


This study reveals for the first time the formation of lead(II) sulfide (PbS) thin films via direct deposition of PbS powder using carbon nanodots (Cdots) as a complexing agent. The chemical bath deposition (CBD) technique was utilized and the Cdots? mass was varied, i.e., (in g) 3, 5, 7, and 9. The Cdots were prepared from the waste of a rice noodle production home industry via the low-temperature carbonization method. The Cdots were characterized using UV-Vis spectrophotometry, showing absorption peaks at 275 nm and 325 nm; PL, showing an emission peak at 500 nm with cyan luminescence; XRD, showing several peaks, indicating an incomplete carbonization process; FTIR, indicating the existence of C=C, C-H, C-O, and O-H functional groups; HRTEM, revealing the sizes of the Cdots in the range of 2 nm to 6 nm; and SEM, showing a smooth morphology of the Cdots? surface. The thin films obtained were smooth with higher XRD peaks and better material distribution compared to pure PbS thin film. The band gap measurement indicated that the increase of the PbS band gap was caused by the increase of the Cdots? mass. Hence, the thin films? band gap may be tuned using the Cdots? mass.


Chalapathi, U., Park, Si-Hyun & Choi W. J., Two-Step Chemical Bath Deposition Enhanced Mobility of Pbs Thin Films, Materials Science in Semiconductor Processing, 136 (106147), 2021.

Ngo, T. T., Masi, S., Mendez, P. F., Kazes, M., Oron, D. & Sero, I. M., Pbs Quantum Dots as Additives in Methylammonium Halide Perovskite Solar Cells: The Effect of Quantum Dot Capping, Nanoscale Advances, 1(10), pp. 4109-4118, 2019.

Khan, Z. R. & Shkir, M., Improved Opto-Nonlinear and Emission Properties of Spray Pyrolysis Grown Nd: Pbs Nanostructured Thin Films, Physica B: Condensed Matter, 627 (413612), 2022.

Ikhioya, I., Ehika, S. & Ijabor, B., Influence of Deposition Potential on Lead Sulfide (Pbs) Thin Film Using Electrodeposition Technique, Asian Journal of Chemical Sciences, 3(4), pp. 1-8, 2018.

Vankhade, D. & Chaudhuri, T. K., Effect of Thickness on Structural and Optical Properties of Spin-Coated Nanocrystalline Pbs Thin Films, Optical Materials, 98 (109491), 2019.

Abdallah, B., Kakhia, M., Zetoun W. & Alkafri, N., Pbs Doped ZnO Nanowires Films Synthesis by Thermal Evaporation Method: Morphological, Structural, and Optical Properties, Microelectronics Journal, 111 (105045), 2021.

Filho, J. M. C. S. & Marques, F. C., Structural and Optical Temperature-Dependent Properties of Pbs Thin Films Deposited by Radio Frequency Sputtering, Material Science in Semiconductor Processing, 91, pp. 188-193, 2019.

Chalapathi, U., Park, S.-H. & Choi, W. J., Two-Step Chemical Bath Deposition Enhanced Mobility of Pbs Thin Films, Materials Science in Semiconductor Processing, 136 (106147), 2021.

Seghaier, S., Kamoun, N., Brini, R. & Amara, A. B., Structural and Optical Properties of Pbs Thin Films Deposited by Chemical Bath Deposition, Materials Chemistry and Physics, 97(1), pp. 71-80, 2006.

Gao, X., Guo, R. & Li, B., Study on Chemical Bath-Deposited Pbs Thin Films with Subsequent Rapid Thermal Treatment: Treatment Temperature-Dependent Microstructure and Near-Infrared Absorption, Physica Scripta, 96(12), 2021.

Ekinci, A., Sahin, O. & Horoz, S., Chemical Bath Deposition of Co-Doped Pbs Thin Films for Solar Cell Application, Journal of Materials Science: Materials in Electronics, 31(2), pp. 1210-1215, 2020.

Whitworth, G. L., Dalmases, M., Taghipour, N. & Konstantatos, G., Solution-Processed Pbs Quantum Dot Infrared Laser with Room Temperature Tunable Emission in The Optical Telecommunications Window, Nature Photonics, 15(10), pp. 738-742, 2021.

Burungale, V. V., Devan, R. S., Pawar, S. A., Harale, N. S., Patil, V. L. P., Ma, Y. R., Ae, J. E., Kim, J. H. & Patil, P. S., Chemically Synthesized Pbs Nanoparticulate Thin Films for A Rapid NO2 Gas Sensor, Materials Science, 34(1), pp. 204-211, 2016.

Sonawane, N. B., Gurav, K. V., Ahire, R. R., Kim, J. H. & Sankapal, B. R., CdS Nanowires with Pbs Nanoparticles Surface Coating as Room Temperature Liquefied Petroleum Gas Sensor, Sensors and Actuators A: Physical, 216, pp. 78-83, 2014.

Pandit, B., Sharma, G. K. & Sankapal, B. R., Chemically Deposited Bi2S3: Pbs Solid Solution Thin Film as Supercapacitive Electrode, Journal of colloid and interface science, 505, pp. 1011-1017, 2017.

Pandit, B., Pande, S. A. & Sankapal, B. R., Facile SILAR Processed Bi2S3: Pbs Solid Solution on MWCNTs for High?Performance Electrochemical Supercapacitor, Chinese Journal of Chemistry, 37(12), pp. 1279-1286, 2019.

Choudhury, N. & Sarma, B. K., Structural Characterization of Lead Sulfide Thin Films by Means of X-Ray Line Profile Analysis, Bull. Mater. Sci., 32, pp. 43-47, 2009.

Paul, S., Mandal, A., Bhattacharjee, P., Chakraborty, S., Paul, R. & Mukhopadhyay, B. K., Evaluation of Water Quality and Toxicity After Exposure of Lead Nitrate in Fresh Water Fish, Major Source of Water Pollution, The Egyptian Journal of Aquatic Research, 45(4), pp. 345-351, 2019.

Information on, (3 May 2022).

Boakye-Yiadom, K. O., Kesse, S., Opoku-Damoah, Y., Filli, M. S., Aquib, Md., Joelle, M. M. B., Farooq, M. A., Mavlyanova, R., Raza, F., Bavi, F. & Wang, B., Carbon Dots: Application in Bioimaging and Theranostics, International Journal of Pharmaceutics, 546, pp. 308-317, 2019.

Shahraki, H. S., Ahmad, A. & Bushra, R., Green Carbon Dots with Multifaceted Applications ? Waste to Wealth Strategy, FlatChem, 31(100310), 2022.

Wu, J., Chen, G., Jia, Yl, Ji, C., Wang, Y., Zhou, Y., Leblanc, R. M. & Peng, Z., Carbon Dots Composites for Bioapplications: A Review, Journal of Materials Chemistry B, 10(6), pp. 843-869, 2022.

Wang, L., Pan, H., Gu, D., Li, P., Su, Y. & Pan, W., A Composite System Combining Self-Targeted Carbon Dots and Thermosensitive Hydrogels for Challenging Ocular Drug Delivery, Journal of Pharmaceutical Sciences, 111(5), pp. 1391-1400, 2022.

Han, M., Zhu, S., Lu, S., Song, Y., Feng, T., Tao, S., Liu, J. & Yang, B., Recent Progress on the Photocatalysis of Carbon Dots: Classification, mechanism and applications, Nanotoday, 19, pp. 201-218, 2018.

Zhang, M., Zhai, X., Sun, M., Ma, T., Huang, Y., Huang, B. & Yan, C., When Rare Earth Meets Carbon Nanodots: Mechanisms, Applications and Outlook, Chemical Society Reviews, 49(24), pp. 9220-9248, 2020.

Shahamirifard, S. A. R., Ghaedi, M., Montazerozohori, & M., Masoudiasi, A., Carbon Dots as Absorbance Promoter Probes for Detection of Cu(II) Ions in Aqueous Solution: Central Composite Design Approach, Photochemical & Photobiological Sciences, 17, pp. 245-255, 2018.

Chan, K. K., Yap, S. H. K. Y. & Yong, K. T., Solid State Carbon Dots-Based Sensor Using Optical Microfiber for Ferric Ion Detection, IEEE International Conference on Sensors and Nanotechnology, pp. 1? 4, 2019.

Sengupta, S., Perez, M., Rabkin, A. & Golan, Y., In Situ Monitoring the Role of Citrate in Chemical Bath Deposition of Pbs Thin Films, Crys. Eng. Comm., 18(1), pp. 149-156, 2016.

Ortega-Liebana, M. C., Chung, N. X., Limpens, R., Gomez, R., Gomez, L., Hueso, J. L., Santamaria, J. & Gregorkiewicz, Uniform Luminescent Carbon Nanodots Prepared by Rapid Pyrolysis of Organic Precursors Confined Within Nanoporous Templating Structures, Carbon, 117, pp. 437-446, 2017.

Dwandaru, W. S. B., Bilqis, S. M., Wisnuwijaya, R. I. & Isnaeni, Optical Properties Comparison of Carbon Nanodots Synthesized from Commercial Granulated Sugar Using Hydrothermal Method and Microwave, Mater. Res. Express, 6(10), pp. 1-8, 2019.

Choi, S., Kim, G. J., Ko, Y. H., Lee, J. E., Lee, S. J., Zheng, X., Hong, S., Park, J. G., Lee, K. S. & Prabhakaran, P., Highly Stable Mixed Halide Prevoskite Quantum Dots Synthesized in the Presence of Fluorous Ligands, Nano Select, 3(7), pp. 1156-1167, 2022.

Zhao, W., Wang, Y., Liu, K., Zhou, R. & Shan, C., Multicolor Biomass Based Carbon Nanodots for Bacterial Imaging, Chinese Chemical Letters, 33(2), pp. 798-802, 2022.

Xu, Y., Li, D., Liu, M., Niu, F., Liu, J. & Wang, E., Enhanced-quantum yield sulfur/nitrogen co-doped fluorescent carbon nanodots produced from biomass Enteromorpha prolifera: synthesis, posttreatment, applications and mechanism study, Scientific Reports, 7(1), 2017.

Sawalha, S., Silvestri, A., Criado, A., Bettini, S., Prato, M. & Valli, L., Tailoring the Sensing Abilities of Carbon Nanodots Obtained from Olive Solid Wastes, Carbon, 167, pp. 696-708, 2020.

Xu, J., Lai, T., Feng, Z., Weng, X. & Huang, C., Formation of Fluorescent Carbon Nanodots from Kitchen Wastes and Their Application for Detection of Fe3+, Luminescence, 30(4), pp. 420-424, 2015.

Rachmawati, H., Raharjo, M. & Lanang, H., Pengaruh kondisi fisik sumur dan penurunan kualitas air (BOD) terhadap kejadian penyakit (studi kasus industri soun di Desa Manjung Kecamatan Ngawen Kabupaten Klaten), Media Kesehatan Masyarakat Indonesia, 18(2), pp. 19-22, 2019.

Macairan, J. R., Medeiros, T. V., Gazzetto, M., Villanueva, F. Y., Cannizo, A. & Naccache, R., Elucidating the Mechanism of Dual-Fluorescence in Carbon Dots, Journal of Colloids and Interface Science, 606, pp. 67-76, 2022.

De, B. & Karak, N., A Green and Facile Approach for The Synthesis of Water-Soluble Fluorescent Carbon Dots from Banana Juice, RSC Advances, 3(2), pp. 8286-8290, 2013.

Hu, Q., Gong, Z., Liu, L. & Choi, M. M. F., Characterization and Analytical Separation of Fluorescent Carbon Nanodots, Journal of Nanomaterials, 2017 (1804178), 2017.

Permatasari, F. A., Nakul, F., Mayangsari, T. R., Aimon, A. H., Nuryadin, B. W., Bisri, S. Z., Ogi, T. & Iskandar, F., Solid-State Nitrogen-Doped Carbon Nanoparticles with Tunable Emission Prepared by A Microwave-Assisted Method, RSC Advances, 11(63), pp. 39917-39923, 2021.

Lauria, A. & Lizundia, E., Luminescent Carbon Dots Obtained from Polymeric Waste, Journal of Cleaner Product, 262 (121288), 2020.

Meng, W., Bai, X., Wang, B., Liu, Z. & Lu, S., Biomass-Derived Carbon Dots and Their Applications, Energy & Environmental Materials, 2(3), pp. 172-192, 2019.

Vankhade, D., Kothari, A. & Chaudhuri, T. K., Direct-Coating Photoconducting Nanocrystalline Pbs Thin Films with Tunable Band Gap, Journal of Electronics Materials, 45, pp. 2789-2795, 2016.

Umami, R., Permatasari, F. A., Muyassiroh, D. A. M., Santika, A. S., Sundari, C. D. W., Ivansyah, A. L., Ogi, T. & Iskandar, F., A rational design of carbon dots via the combination of nitrogen and oxygen functional groups towards the first NIR window absorption, Journal of Materials Chemistry C, 10(4), pp. 1394-1402, 2022.

Santika, A. S., Permatasari, F. A., Umami, R., Muyassiroh, D. A. M., Irham, M. A., Fitriani, P. & Iskandar, F., Revealing the synergetic interaction between amino and carbonyl functional groups and their effect on the electronic and optical properties of carbon dots, Physical Chemistry Chemical Physics, 24(44), pp. 27163-27172, 2022.