Synthesis, Structure, Magnetic and Antibacterial Properties of polymeric [M(Quin)2(N(CN)2)2]? (M = Mn(II), Co(II); Quin = quinoline)

Authors

  • I Wayan Dasna Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5, Malang, Jawa Timur, Indonesia 65145
  • Ubed Sonai Fahruddin Arrozi Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5, Malang, Jawa Timur, Indonesia 65145
  • Husni Wahyu Wijaya Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5, Malang, Jawa Timur, Indonesia 65145
  • Sutandyo Dwija Laksmana Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang 5, Malang, Jawa Timur, Indonesia 65145
  • Stéphane Golhen University of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) ? UMR 6226, 35000 Rennes, France

DOI:

https://doi.org/10.5614/j.math.fund.sci.2022.54.2.4

Keywords:

Manganese(II) complex, Cobalt(II) complex, quinoline ligand, antiferromagnetic, antibacterial

Abstract

Two complexes of [Mn(Quin)2(N(CN)2)2]? (1) and [Co(Quin)2(N(CN)2)2]? (2) were synthesized and characterized. The as-synthesized complexes crystallized in a triclinic lattice with a space group of P-1. The unit cell parameter of 1 was a = 7.5207(14) b = 7.7729(16) c = 9.5968(15) ? = 96.388(6) o, ? = 112.617(5) o, ? = 102.751(6) o, while for complex 2 it was a = 7.3942(10) b = 7.7960(10) c = 9.4907(13) ? = 96.631(4) o, ? = 112.742(4) o, ? = 102.458(4) o. The magnetic properties and antimicrobial properties of both polymeric complexes were examined by magnetic susceptibility and diffusion techniques, respectively. Complexes 1 and 2 both showed antiferromagnetic properties and had a higher inhibitory effect on the growth of Staphylococcus aureus than Salmonella typhi.

References

Fair, R. J. & Tor, Y., Antibiotics and Bacterial Resistance in the 21st Century, Perspect. Medicin. Chem., (6), pp. 25?64, 2014.

Adzitey, F., Antibiotic Classes and Antibiotic Susceptibility of Bacterial Isolates from Selected Poultry; A Mini Review, World Vet J., 5(53), pp. 36?41, 2015.

Hemeg, H. A., Nanomaterials for Alternative Antibacterial Therapy, Int. J. Nanomedicine, 12, pp. 8211?8225, 2017.

Witwit, I. N., Motaweq, Z. Y. & Mubark, H. M., Synthesis, Characterization, and Biological Efficacy On New Mixed Ligand Complexes Based from Azo Dye of 8-Hydroxy Quinoline as A Primary Ligand and Imidazole as A Secondary Ligand with Some of Transition Metal Ions, J. Pharm. Sci. Res., 10(12), pp. 3074?3083, 2018.

Colette, A., Yuoh, B., Agwara, M.O., Yufanyi, D. M., Conde, M. A., Jagan, R. & Eyong, K. O., Synthesis, Crystal Structure, and Antimicrobial Properties of a Novel 1-D Cobalt Coordination Polymer with Dicyanamide and 2-Aminopyridine, Int. J. Inorg. Chem., pp. 9?12, 2015.

Mehta, J. V., Gajera, S. B., Raval, D. B., Thakkar, V. R. & Patel, M. N., Biological Assessment of Substituted Quinoline Based Heteroleptic Organometallic Compounds, Medchemcomm, 7(8), pp. 1617?1627, 2016.

Lipunova, G. N., Nosova, E. V., Charushin, V. N. & Chupakhin, O. N., Structural, Optical Properties, and Biological Activity of Complexes Based on Derivatives of Quinoline, Quinoxaline, and Quinazoline with Metal Centers from Across the Periodic Table, Comments Inorg. Chem., 34(5?6), pp. 142?177, 2014.

Kljun, J. & Turel, I., Biological Activity of Ruthenium Complexes with Quinoline Antibacterial and Antimalarial Drugs, in Holder, A. A., Lilge, L., Browne, W. R., Lawrence, M. A. W., and Jr, J. L. B. (Eds.), Ruthenium Complexes: Photochemical and Biomedical Applications, Walter de Gruyter GmbH, London, pp. 239?255, 2017.

Zou, X. Z., Zhang, J. A., Zhang, L. J., Liu, Y. J., Li, N., Li, Y., Wei, S. C. & Pan, M., Crystal Structures and Biological Activities of a Symmetrical Quinoline Thioether Ligand and Its Transition Metal Complexes, Inorg. Chem. Commun., 54, pp. 21?24, 2015.

Sani, U. & Iliyasu, S. M., Synthesis, Characterization and Antimicrobial Studies on Schiff Base Derived from 2-Aminopyridine and 2-Methoxybenzaldehyde and Its Cobalt(II) and Nickel(II) Complexes, Bayero J. Pure Appl. Sci., 11(1), pp. 214, 2019.

Ejidike, I. P. & Ajibade, P. A., Transition Metal Complexes of Symmetrical and Asymmetrical Schiff Bases as Antibacterial, Antifungal, Antioxidant, and Anticancer Agents: Progress and Prospects, Rev. Inorg. Chem., 35(4), pp. 191?224, 2015.

Al-Shaalan, N. H., Synthesis, Characterization and Biological Activities of Cu(II), Co(II), Mn(II), Fe(II), and UO2(VI) Complexes with A New Schiff Base hydrazone: O-hydroxyacetophenone-7-chloro-4-quinoline hydrazone, Molecules, 16(10), pp. 8629?8645, 2011.

Kurtar, S. N. K., Kor, F. & Kose, M., Monomeric and 1D Polymeric Cu(II) Complexes Derived from Dicyanamide: Structural, Characterization, and Antibacterial Properties, J. Struct. Chem., 61(8), 1296?1305, 2020.

Tabrizi, L., Chiniforoshan, H. & McArdle, P., A Novel One-Dimensional Manganese(II) Coordination Polymer Containing Both Dicyanamide and Pyrazinamide Ligands: Synthesis, Spectroscopic Investigations, X-Ray Studies, and Evaluation of Biological Activities, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 139, pp. 307?312, 2015.

Zheng, L.-L., Synthesis, Crystal Structures, and Magnetic Properties of Ternary M(II)-Dicyanamide-hydroxypyridine Complexes, J. Inorg. Chem., 2013(II), pp. 1?10, 2013.

Mautner, F. A., Jantscher, P., Fischer, R. C., Torvisco, A., Vicente, R., Karsili, T. N. V. & Massoud, S. S., Synthesis and Characterization of 1D Coordination Polymers of Metal(II)-dicyanamido Complexes, Polyhedron, 166, 36?43, 2019.

Mautner, F. A., Jantscher, P. V., Fischer, R. C., Torvisco, A., Reichmann, K., Salem, N. M. H., Gordon, K. J., Louka, F. R. & Massoud, S. S., Coordination Polymers in Dicyanamido-Cadmium(II) with Diverse Network Dimensionalities, Crystals, 11(2), pp. 1?13, 2021.

Mirzaei, M., Eshtiagh-Hosseini, H., Bolouri, Z., Rahmati, Z., Esmaeilzadeh, A., Hassanpoor, A., Bauza, A., Ballester, P., BarcelOliver, M., Mague, J. T., Notash, B. & Frontera, A., Rationalization of Noncovalent Interactions Within Six New MII/8-Aminoquinoline Supramolecular Complexes, Cryst. Growth Des., 15(3), pp. 1351?1361, 2015.

Dasna, I. W., Golhen, S., Ouahab, L. & Subakti, Synthesis, Single Crystal Structure, and Magnetic Properties of 3-D Cu(NITpPy)2[Cu(CN)3].2CH3OH.2H2O Complexes, IOP Conf. Ser. Mater. Sci. Eng., 202(1), 2017.

Kundu, S., Roy, S., Bhar, K., Ghosh, R., Lin, C. H., Ribas, J. & Ghosh, B. K., Syntheses, Structures and Magnetic Properties of Two One-Dimensional Coordination Polymers of Cobalt(II) and Nickel(II) Dicyanamide Containing a Tridentate N-donor Schiff Base, J. Mol. Struct., 1038, 78?85, 2013.

Eberle, B., Herrmann, H., Kaifer, E. & Himmel, H. J., Redox Reactions Between Guanidine Electron Donors and Silver Dicyanamide: Synthesis of C, N Material Precursors and Coordination Polymers, Eur. J. Inorg. Chem., 2(21), pp. 3671?3679, 2013.

Mehta, K. V., Synthesis, Characterization, and Antimicrobial Activity of Some Heterocyclic Compounds and Its Metal Complexes, Silpakorn U Sci. Tech J., 2(8), pp. 62?70, 2014.

Anacona, J. R., Ruiz, K., Loro, M. & Celis, F., Antibacterial Activity of Transition Metal Complexes Containing a Tridentate NNO Phenoxymethylpenicillin-Based Schiff Base. An Anti-MRSA Iron(II) Complex, Appl. Organomet. Chem., 33(4), pp. 1?9, 2019.

Dasna, I., Golhen, S., Ouahab, L., Pe, O., Daro, N. & Sutter, J. P., Ferromagnetic Interactions in 0D and 2D Mn(II) Coordination Complexes Containing Nitronyl-Nitroxide Radicals and Dicyanamide Anions: CH3CN, Comptes Rendus l?Academie des Sci. - Ser. IIC Chem., 4(2), pp. 125?133, 2001.

Dasna, I., Golhen, S., Ouahab, L., Daro, N. & Sutter, J. P., Synthesis, X-Ray Crystal Structures and Magnetic Properties of Cuii and Mnii Complexes Containing Imino Nitroxide Radicals and A Dicyanamide Anion, New J. Chem., 25(12), pp. 1572?1576, 2001.

Chakraborty, P. & Dasgupta, S., Synthesis of One-Dimensional Coordination Polymer using Dicyanamide Spacer to Explore Catecholase Like Activity, Polyhedron, 188, 114700, 2020.

Setifi, Z., Geiger, D., Jelsch, C., Maris, T., Glidewell, C., Mirzaei, M., Arefian, M., Setifi, F., The First Fe(II) Complex Bearing end-to-end Dicyanamide as a Double Bridging Ligand: Crystallography Study and Hirshfeld Surface Analysis; Completed with a CSD Survey, Journal of Molecular Structure, 1173(II), pp. 697-706, 2018.

Lopes, L. B. Corr, C. C., Guedes, G. P., Vaz, M. G. F., Diniz, R., Machado, F. C., Two New Coordination Polymers Involving Mn(II), Co(II), Dicyanamide Anion and The Nitrogen Ligand 5,5?-Dimethyl-2,2?-Dipyridine: Crystal Structures and Magnetic Properties, Polyhedron, 50(1), pp. 16?21, 2013.

Mbani, A. L. O., Yufanyi, D. M., Tabong, C. D., Hubert, N. J., Yuoh, A. C. B., Paboudam, A. G. & Ondoh, A.M., Synthesis, Crystal Structure, DFT Studies and Hirshfeld Surface analysis of Manganese(II) and Cadmium(II) Coordination Polymers of 2-aminopyridine and Dicyanamide, J. Mol. Struct., 1261, 132956, 2022.

Hindi, K. M., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Youngs, W. J., 2009, The Medicinal Applications of Imidazolium Carbene-metal Complexes, Chem. Rev., 109(8), pp. 3859?3884, 2009.

Downloads

Published

2023-03-19

How to Cite

Dasna, I. W., Arrozi, U. S. F. ., Wijaya, H. W. ., Laksmana, S. D., & Golhen, S. (2023). Synthesis, Structure, Magnetic and Antibacterial Properties of polymeric [M(Quin)2(N(CN)2)2]∞ (M = Mn(II), Co(II); Quin = quinoline). Journal of Mathematical and Fundamental Sciences, 54(2), 261-274. https://doi.org/10.5614/j.math.fund.sci.2022.54.2.4

Issue

Section

Articles