Shallow S-wave Velocity Profile Estimation using Surface Velocity and Microtremor HVSR with a Linear Velocity Increase Approach

Authors

  • Andi Muhamad Pramatadie Department of Geophysics, Hasanuddin University, Jalan Perintis Kemerdekaan Km. 10, Makassar, 90245, Indonesia
  • Hiroaki Yamanaka Department of Architecture and Building Engineering, Tokyo Institute of Technology, 4259-G5-6 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
  • Afnimar Afnimar Geophysical Engineering Study Program, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2023.54.3.4

Keywords:

microtremors, horizontal-to-vertical spectral ratio, Rayleigh wave, velocity-depth function, soil amplification

Abstract

We propose a simple method for 1D S-wave velocity (Vs) profile estimation using a measured surface S-wave velocity (V1) and peak frequency of the observed microtremor horizontal-to-vertical spectral ratio (HVSR). In this method, the S-wave velocity profile is presented as linear velocity increase with depth in sediments over a bedrock layer that has a given constant S-wave velocity. Thus, the profile can be parameterized with the measured surface S-wave velocity and the velocity gradient. The gradient can be estimated based on the agreement of the peak frequencies of the observed microtremor HVSR and the theoretical ellipticity of the fundamental mode of the Rayleigh wave. We examined the applicability of the proposed method using numerical tests as well as application to actual data at five sites in the Bandung Basin, Indonesia, where observed Rayleigh wave phase velocities from microtremor array surveys were available. The applicability was confirmed in numerical tests using sample models of soil profiles in the basin. Actual application indicated the appropriateness of the estimated S-wave velocity profiles due to the similarity of their theoretical Rayleigh wave phase velocities with the observed Rayleigh wave phase velocities. Since the proposed method needs prior confirmation of the linear increase of the S-wave velocity, it is suitable for use in spatial interpolation of shallow S-wave velocity profiles with simple data acquisition.

References

Theilen, F.R. & Pecher, I. A., Assessment of Shear Strength of the Sea Bottom from Shear Wave Velocity Measurements On Box Cores and In-Situ, Shear waves in marine sediments, pp. 67?74, 1991.

Horike, M., Inversion of Phase Velocity of Long-Period Microtremors to The S-Wave-Velocity Structure Down to The Basement in Urbanized Areas, Journal of Physics of the Earth, 33(2), pp. 59?96, 1985.

Mainsant, G., Larose, E, Brnimann, C., Jongmans, D., Michoud, C. & Jaboyedoff, M., Ambient Seismic Noise Monitoring of a Clay Landslide: Toward Failure Prediction, Journal of Geophysical Research: Earth Surface, 117(F01030), pp. 1-12, 2012.

Wu, J-P., Ming, Y-H. & Wang, C-Y., S Wave Velocity Structure Beneath Digital Seismic Stations of Yunnan Province Inferred from Teleseismic Receiver Function Modeling, Chinese Journal of Geophysics, 44(2), pp. 223?232, 2001.

Magrini, F., Diaferia, G., Fadel, I., Cammarano, F., van der Meijde, M. & Boschi, L., 3-D Shear Wave Velocity Model of the Lithosphere Below the Sardinia?Corsica Continental Block Based on Rayleigh-Wave Phase Velocities, Geophysical Journal International, 220(3), pp. 2119?2130, 2020.

Bonnelye, A., Schubnel, A., David, C., Henry, P., Guglielmi, Y., Gout, C., Fauchille, A.L. & Dick, P., Elastic Wave Velocity Evolution of Shales Deformed Under Uppermost Crustal Conditions. Journal of Geophysical Research: Solid Earth, 122(1), pp. 130?141, 2017.

Fukushima, S., Shinohara, M., Nishida, K., Takeo, A., Yamada, T. & Yomogida, K., Detailed S-Wave Velocity Structure of Sediment and Crust Off Sanriku, Japan by A New Analysis Method for Distributed Acoustic Sensing Data Using a Seafloor Cable and Seismic Interferometry, Earth, Planets and Space, 74(1), pp. 1?11, 2022.

Grutas, R. & Yamanaka, H., Shallow Shear-Wave Velocity Profiles and Site Response Characteristics from Microtremor Array Measurements in Metro Manila, the Philippines, Exploration Geophysics, 43(4), pp. 255?266, 2012.

Zaineh, H.E., Yamanaka, H., Dakkak, R., Khalil, A. & Daoud, M., Estimation of Shallow S-Wave Velocity Structure in Damascus City, Syria, Using Microtremor Exploration, Soil Dynamics and Earthquake Engineering, 39, pp. 88?99, 2012.

Karagoz, O., Chimoto, K., Citak, S., Ozel, O., Yamanaka, H. & Hatayama, K., Estimation of Shallow S-Wave Velocity Structure and Site Response Characteristics by Microtremor Array Measurements in Tekirdag Region, NW Turkey, Earth, Planets and Space, 67(176), pp. 1?17, 2015.

Park, C.B., Miller, R.D. & Xia, J., Multichannel Analysis of Surface Waves, Geophysics, 64(3), pp. 800-808, 1999.

Okada, H. & Suto, K., The Microtremor Survey Method, Society of Exploration Geophysicists, 2003.

Nakamura, Y., A method for Dynamic Characteristics Estimation of Subsurface Using Microtremor On the Ground Surface, Railway Technical Research Institute, Quarterly Reports, 30(1), pp. 25?33, 1989.

Nogoshi, M. & Igarashi, T., On the Amplitude Characteristics of Microtremor (part 2), Journal of the Seismological Society of Japan, 24(1), pp. 26?40, 1971. (Text in Japanese)

Yamanaka, H., Takemura, M., Ishida, H. & Niwa, M., Characteristics of Long-Period Microtremors and Their Applicability in Exploration of Deep Sedimentary Layers, Bulletin of the Seismological Society of America, 84(6), pp. 1831-1841, 1994.

F, D., Kind, F. & Giardini, D., A Theoretical Investigation of Average H/V Ratios, Geophysical Journal International, 145(2), pp. 535-549, 2001.

F, D., Kind, F. & Giardini, D., Inversion of Local S-Wave Velocity Structures from Average H/V Ratios, And Their Use for The Estimation of Site-Effects, Journal of Seismology, 7(4), pp. 449-467, 2003.

Arai, H. & Tokimatsu, K., S-Wave Velocity Profiling by Inversion of Microtremor H/V Spectrum, Bulletin of the Seismological Society of America, 94(1), pp. 53-63, 2004.

Pilz, M., Parolai, S., Picozzi, M., Wang, R., Leyton, F., Campos, J. & Zschau, J., Shear Wave Velocity Model of the Santiago De Chile Basin Derived from Ambient Noise Measurements: A Comparison of Proxies for Seismic Site Conditions and Amplification, Geophysical Journal International, 182(1), pp. 355-367, 2010.

Cipta, A., Cummins, P., Dettmer, J., Saygin, E., Irsyam, M., Rudyanto, A. & Murjaya, J., Seismic Velocity Structure of the Jakarta Basin, Indonesia, Using Trans-Dimensional Bayesian Inversion of Horizontal-To-Vertical Spectral Ratios, Geophysical Journal International, 215(1), pp. 431-449, 2018.

Scherbaum, F., Hinzen, K.G. & Ohrnberger, M., Determination of Shallow Shear Wave Velocity Profiles in The Cologne, Germany Area Using Ambient Vibrations, Geophysical Journal International, 152(3), pp. 597-612, 2003.

Ohrnberger, M., Scherbaum, F., Krer, F., Pelzing, R. & Reamer S-K., How Good Are Shear Wave Velocity Models Obtained from Inversion of Ambient Vibrations in the Lower Rhine Embayment (NW Germany), Bollettino Di Geofisica Teorica ed Applicata, 45(3), pp. 215?232, 2004.

Dal Moro, G., Surface wave analysis for near surface applications, Elsevier, pp. 77-78, 2014.

Ibs-von Seht, M. & Wohlenberg, J., Microtremor Measurements Used to Map Thickness of Soft Sediments, Bulletin of the Seismological Society of America, 89(1), pp. 250-259, 1999.

Parolai, S., Bormann, P. & Milkereit, C., New Relationships Between Vs, Thickness of Sediments, and Resonance Frequency Calculated by the H/V Ratio of Seismic Noise for The Cologne Area (Germany), Bulletin of the seismological society of America, 92(6), pp. 2521-2527, 2002.

D?Amico, V., Picozzi, M., Albarello, D., Naso, G. & Tropenscovino, S., Quick Estimates of Soft Sediment Thicknesses from Ambient Noise Horizontal to Vertical Spectral Ratios: A Case Study in Southern Italy, Journal of Earthquake Engineering, 8(6), pp. 895-908, 2004.

Thabet, M., Site-Specific Relationships between Bedrock Depth and HVSR Fundamental Resonance Frequency Using KiK-NET Data from Japan, Pure and Applied Geophysics, 176(11), pp. 4809?4831, 2019.

Thabet M. Improved Site-Dependent Statistical Relationships of VS and Resonant Frequency Versus Bedrock Depth in Japan, Journal of Seismology, 25(6), pp. 1441?1459, 2021.

Holzer, T.L., Bennett, M.J., Noce, T.E. & Tinsley III, J.C., Shear-Wave Velocity of Surficial Geologic Sediments in Northern California: Statistical Distributions and Depth Dependence, Earthquake Spectra, 21(1), pp. 161-177, 2005.

Yamamizu, F., Goto, N., Ohta, Y. & Takahashi, H., Attenuation of Shear Waves in Deep Soil Deposits as Revealed by Down-Hole Measurements in The 2,300 Meter-Borehole of the Shimohsa Observatory, Japan, Journal of Physics of the Earth, 31(2), pp. 139-157, 1983.

Parolai, S., Maesano, F.E., Basili, R., Silacheva, N., Boxberger, T. & Pilz, M., Fingerprint Identification Using Noise in the Horizontal-to-Vertical Spectral Ratio: Retrieving the Impedance Contrast Structure for the Almaty Basin (Kazakhstan), Frontiers in Earth Science, 7, pp. 336, 2019.

Wang, S.Y., Shi, Y., Jiang, W.P., Yao, E.L. & Miao, Y., Estimating Site Fundamental Period from Shear?Wave Velocity Profile, Bulletin of the Seismological Society of America, 108(6), pp. 3431-3445, 2018.

Slotnick, M.M., On Seismic Computations, with Applications, I, Geophysics, 1(1), pp. 9-22, 1936.

Wang, S.Y. & Wang, H.Y., Site-Dependent Shear-Wave Velocity Equations Versus Depth in California and Japan, Soil Dynamics and Earthquake Engineering, 88, pp. 8-14, 2016.

Hiraishi, H., Midorikawa, M., Teshigawara, M., Gojo, W. & Okawa, I., Performance-Based Building Code of Japan-Framework of Seismic and Structural Provisions, In: Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand. 2000.

Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G. & Forbriger, T., Guidelines for the Good Practice of Surface Wave Analysis: A Product of the Interpacific Project, Bulletin of Earthquake Engineering, 16(6), pp. 2367-2420, 2018.

Tokimatsu, K., Tamura, S. & Kojima, H., Effects of Multiple Modes on Rayleigh Wave Dispersion Characteristics, Journal of Geotechnical Engineering, 118(10), pp. 1529-1543, 1992.

Satoh, T., Kawase, H., Sato, T. & Pitarka, A., Three-Dimensional Finite-Difference Waveform Modeling of Strong Motions Observed in the Sendai Basin, Japan, Bulletin of the Seismological Society of America, 91(4), pp. 812?825, 2001.

Uebayashi, H., Kawabe, H. & Kamae, K., Reproduction of Microseism H/V Spectral Features Using a Three-Dimensional Complex Topographical Model of the Sediment-Bedrock Interface in the Osaka Sedimentary Basin, Geophysical Journal International, 189(2), pp. 1060?1074, 2012.

Dal Moro, G. & Panza, G.F., Multiple-Peak HVSR Curves: Management and Statistical Assessment, Engineering Geology, 297, 106500, 2022.

Dam, M.A.C., Suparan, P., Nossin, J.J. & Voskuil, R.P.G.A., A Chronology for Geomorphological Developments in The Greater Bandung Area, West-Java, Indonesia. Journal of Southeast Asian Earth Sciences, 14(1-2), pp. 101-115, 1996.

Desiani, A. & Rahardjo, P.P., Characterization of Bandung Soft Clay, Electronic Journal of Geotechnical Engineering, 22(11), pp. 4377-4393, 2017.

Dam, M. A. C. & Suparan, P., Geology of the Bandung Basin, Special Publication No. 13, Geological Research and Development Center, Bandung, Indonesia, 1992.

Ohta, Y. & Goto, N., Empirical Shear Wave Velocity Equations in Terms of Characteristic Soil Indexes, Earthquake engineering and structural dynamics, 6(2), pp. 167-187, 1978.

Ridwan, M., Cummins, P.R., Widiyantoro, S. and Irsyam, M., Site Characterization Using Microtremor Array and Seismic Hazard Assessment for Jakarta, Indonesia, Bulletin of the Seismological Society of America, 109(6), pp. 2644-2657, 2019.

Haskell, N.A., The Dispersion of Surface Waves on Multilayered Media, Bulletin of the Seismological Society of America, 43(1), pp. 17-34, 1953.

Kitsunezaki, C., Goto, N., Kobayashi, Y., Ikawa, T., Horike, M., Saito, T., Kuroda, T., Yamane, K. & Okuzumi, K., Estimation of P-and S-wave Velocities in Deep Soil Deposits for Evaluating Ground Vibrations in Earthquake, Journal of the Japan Society for Natural Disaster Science, 9, pp. 1-17, 1990. (Text in Japanese)

Rosa-Cintas, S., Galiana-Merino, J.J., Molina-Palacios, S., Rosa-Herranz, J., Garc-Ferndez, M. & Jimez, M.J., Soil Characterization in Urban Areas of the Bajo Segura Basin (Southeast Spain) Using H/V, F?K and ESAC Methods, Journal of applied geophysics, 75(3), pp. 543-557, 2011.

Kurose, T. & Yamanaka, H., Joint Inversion of Receiver Function and Surface-Wave Phase Velocity for Estimation of Shear-Wave Velocity of Sedimentary Layers, Exploration Geophysics, 37(1), pp. 93-101, 2006.

Chimoto, K., Yamanaka, H., Tsuno, S., Miyake, H. & Yamada, N., Estimation of Shallow S-Wave Velocity Structure Using Microtremor Array Exploration at Temporary Strong Motion Observation Stations for Aftershocks of The 2016 Kumamoto Earthquake, Earth, Planets and Space, 68(1), pp. 1-10, 2016.

Yamanaka, H., Tsuno, S., Chimoto, K., Yamada, N., Fukumoto, S. & Eto, K., Estimation of Site Amplification from Observation of Aftershocks of The 2011 Off The Pacific Coast of Tohoku Earthquake and Microtremor Explorations in The Vicinity of K-NET Tsukidate station, Miyagi prefecture, Japan, Geophysical Exploration (Butsuri Tansa), 64, pp. 389-399, 2011. (Text in Japanese)

Xia, J., Miller, R.D., Park, C.B., Hunter, J.A. & Harris, J.B., Comparing Shear-Wave Velocity Profiles from MASW with Borehole Measurements in Unconsolidated Sediments, Fraser River Delta, BC, Canada, Journal of Environmental and Engineering Geophysics, 5(3), pp. 1-13, 2000.

Pramatadie, A.M., Yamanaka, H., Chimoto, K., Afnimar, Koketsu, K., Sakaue, M., Miyake, H., Sengara, I.W. & Sadisun, I.A., Microtremor Exploration for Shallow S-Wave Velocity Structure in Bandung Basin, Indonesia, Exploration Geophysics, 48(4), pp. 401-412, 2017.

Capon, J., High-Resolution Frequency-Wavenumber Spectrum Analysis, Proceedings of the IEEE, 57(8), pp. 1408-1418, 1969.

SESAME Project, Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation.http://sesame.geopsy.org/Delivrables/Del-D23-HV_User_Guidelines.pdf, 2004.

Building Seismic Safety Council, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (Fema 450), pp. 47-49, 2004.

Stambouli, A.B., Zendagui, D., Bard, P.Y. & Derras, B., Deriving Amplification Factors from Simple Site Parameters Using Generalized Regression Neural Networks: Implications for Relevant Site Proxies, Earth, Planets and Space, 69(1), pp. 1-26, 2017.

Trifunac, M.D., How to Model Amplification of Strong Earthquake Motions by Local Soil and Geologic Site Conditions, Earthquake Engineering and Structural Dynamics, 19(6), pp. 833-846, 1990.

Tuan, T.T., Scherbaum, F. & Malischewsky, P.G., On the Relationship of Peaks and Troughs of the Ellipticity (H/V) Of Rayleigh Waves and The Transmission Response of Single Layer Over Half?Space Models, Geophysical Journal International, 184(2), pp. 793-800, 2011.

Konno, K. & Ohmachi, T., Ground-Motion Characteristics Estimated from Spectral Ratio Between Horizontal and Vertical Components of Microtremor, Bulletin of the Seismological Society of America, 88(1), pp. 228-241, 1998.

Downloads

Published

2023-07-26

How to Cite

Pramatadie, A. M., Yamanaka, H., & Afnimar, A. (2023). Shallow S-wave Velocity Profile Estimation using Surface Velocity and Microtremor HVSR with a Linear Velocity Increase Approach. Journal of Mathematical and Fundamental Sciences, 54(3), 330-358. https://doi.org/10.5614/j.math.fund.sci.2023.54.3.4

Issue

Section

Articles