Modelling the Impact of Decomposed Disease-Induced Dead Cashew Plants on Fusarium Wilt Dynamics in South-Eastern Tanzania

Authors

  • Fatu Chilinga Department of Mathematics and Statistics, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
  • Alfred K. Hugo Department of Mathematics and Statistics, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania

DOI:

https://doi.org/10.5614/j.math.fund.sci.2023.55.1.3

Keywords:

cashew plants, Fusarium wilt, Fusarium oxysporum, disease-induced death, parameter estimation

Abstract

Cashew Fusarium wilt disease transmitted by Fusarium oxysporum is dangerous and destroys many cashew plants in Tanzania. The effect of this disease leads households and the government to experience a decrease in overall cashew production and income due to this disease?s capacity to harm cashew plants. This study aimed to ascertain the role of Fusarium wilt-decayed disease-induced dead plants in spreading the disease among cashew plants. A mathematical model was created based on the dynamics of the disease and a stability analysis was conducted using theories of ordinary differential equations. Data from two regions in Tanzania, Lindi, and Mtwara, were used in model fitting and parameter estimation. Additionally, the parameters were estimated using maximum likelihood estimation (MLE). The outcome suggests that the disease?s prevalence and spread increase during an outbreak as decomposed diseased-induced dead plants contribute to the saturation of chlamydospores in the soil.

References

Brufau, G., Boatella, J. & Rafecas, M., Nuts: Source of Energy and Macronutrients, Br. J. Nutr., 96(2), pp. 24-28, 2006. DOI: 10.1017/BJN20061860.

Dendena, B. & Corsi, S., Cashew, From Seed to Market: A Review, Agron. Sustain. Dev., 34, pp. 753-772, 2014. DOI: 10.1007/s13593-014-0240-7.

Menge, D.O.M.I.N.I.C. & Shomari, S., Studies on Leaf and Nut Blight of Cashew (Anacardium Occidentale) Caused by Cryptosporiopsis sp. in Tanzania, 2016.

Mukuddem-Petersen, J., Stonehouse, W., Jerling, J.C., Hanekom, S.M. & White, Z., Effects of A High Walnut and High Cashew Nut Diet on Selected Markers of the Metabolic Syndrome: A Controlled Feeding Trial, Br. J. Nutr., 97(6), pp. 1144-1153, 2007. DOI: 10.1017/S0007114507682944.

Ramadhani, H.A., Kassim, N., Lyimo, B. & Matemu, A., Physicochemical Quality of Street Vended Roasted Cashew Nuts In Tanzania, Am. J. Res. Commun., 2(9), pp. 175-184, 2014. Available: www.usa-journals.com.

Nene, W. & Sijaona, M., Assessment of Incidences And Severity of Cashew Leaf and Nut Blight Disease (CLNBD) in the Southern Areas of Tanzania, Int. J. Sci. Res., 6(10), pp. 1589-1594, 2017.

Wonni, I., Sereme, D., Ouraogo, I., Kassankagno, A.I., Dao, I., Ouedraogo, L. & Nacro, S., Diseases of Cashew Nut Plants (Anacardium occidentale L.) in Burkina Faso, Adv. Plants Agric. Res., 6(3), 00216, 2017. DOI: 10.15406/apar.2017.06.00216.

Majune, D., Masawe, P. & Mbega, E., Status and Management of Cashew Disease in Tanzania, Int. J. Environ. Agric. Biotechnol., 3(5), pp. 1590-1597, 2018. DOI: 10.22161/ijeab/3.5.4.

Sijaona, M.E.R., Reeder, R.H. & Waller, J.M., Cashew Leaf and Nut Blight ? A New Disease of Cashew In Tanzania Caused by Cryptosporiopsis sp. Plant Pathology, 55(4), 55576, 2006.

Ellis, F., A Preliminary Analysis of the Decline in Cashew Nut Production, 1974-1979: Causes, Possible Remedies and Lessons for Rural Development Policy, Dar es salaam, 1980.

Brown, L.C., Minja, E. & Hamad, A.S., Cashew Production in East Africa. Paper Presented at CABI?s First Scientific Conference on Advancing Agricultural Production in Africa, in Proceedings of CAB?s 1st. Scientific Conference Arusha, pp. 160-163, 1984.

Tibuhwa, D.D. & Shomari, S., Fusarium Wilt Disease: An Emerging Threat to Cashew Nut Crop Production in Tanzania., Asian J. Plant Pathol. Pathol., 10, pp. 36-48, 2016.

Okungbowa, F.I. & Shittu, H.O., Fusarium Wilts: An Overview, Environ. Res. J., 6(2), pp. 83?102, 2016.

Moore, N.Y., Bentley, S., Pegg, K.G. & Jones, D.R.J., Musa Disease Fact Sheet N 5 Fusarium Wilt of Banana, in International Network for the Improvement of Banana and Plantain, Parc Scientifique Agropolis (Inibap), 1995.

Mbasa, W.V., Nene, W.A., Kapinga, F.A., Lilai, S.A. & Tibuhwa, D.D., Characterization and Chemical Management of Cashew Fusarium Wilt Disease Caused by Fusarium Oxysporum in Tanzania, Crop Prot., 139, 105379, 2021. DOI: 10.1016/j.cropro.2020.105379.

Punja, Z.K. & Parker, M., Development of Fusarium Root and Stem Rot, A New Disease on Greenhouse Cucumber in British Columbia, Caused by Fusarium oxysporum f. sp. radicis-cucumerinum, Can. J. Plant Pathol., 22(4), pp. 349-363, 2000. DOI: 10.1080/07060660009500453.

Flood, J., Fusarium ? A Review of Fusarium wilt of oil palm caused by Fusarium oxysporum f . sp . elaeidis, Phytopathology, 96(6), pp. 660-662, 2006.

Pegg, K.G., Coates, L.M., O?Neill, W.T. & Turner, D.W., The Epidemiology of Fusarium Wilt of Banana, Front. Plant Sci., 10, pp. 1-19, 2019. DOI: 10.3389/fpls.2019.01395.

Hohle, M., Infectious Disease Modelling, Handb. Spat. Epidemiol., pp. 477-500, 2015.

Kumar, S., Kumar, R., Osman, M.S. & Samet, B., A Wavelet Based Numerical Scheme for Fractional Order SEIR Epidemic of Measles by Using Genocchi Polynomials, Numer. Methods Partial Differ. Equ., 37(2), pp. 1250?1268, 2021. DOI: 10.1002/num.22577.

Khan, M.A., Ullah, S. & Kumar, S., A Robust Study On 2019-Ncov Outbreaks Through Non-Singular Derivative, Eur. Phys. J. Plus, 136, pp. 1-20, 2021. DOI: 10.1140/epjp/s13360-021-01159-8.

Mohammadi, H., Kumar, S., Rezapour, S. & Etemad, S., A Theoretical Study of the Caputo?Fabrizio Fractional Modelling For Hearing Loss due to Mumps Virus with Optimal Control, Chaos, Solitons and Fractals, 144, 110668, 2021. DOI: 10.1016/j.chaos.2021.110668.

Kumar, S., Chauhan, R.P., Momani, S. & Hadid, S., Numerical Investigations on COVID-19 Model through Singular and Non-Singular Fractional Operators, Numer. Methods Partial Differ. Equ., pp. 1-27, 2020. DOI: 10.1002/num.22707.

Kumar, S., Kumar, A., Samet, B. & Dutta, H., A Study on Fractional Host?Parasitoid Population Dynamical Model to Describe Insect Species, Numer. Methods Partial Differ. Equ., 37(2), pp. 1673-1692, 2021. DOI: 10.1002/num.22603.

Burie, J.B., Calonnec, A. & Langlais, M., Modelling of the Invasion of A Fungal Disease Over A Vineyard, in Mathematical Modeling of Biological Systems, Volume II: Epidemiology, Evolution and Ecology, Immunology, Neural Systems and the Brain, and Innovative Mathematical Methods, pp. 11?21, 2008.

Anggriani, N., Putri, L.N. & Supriatna, A.K., Stability Analysis and Optimal Control of Plant Fungal Epidemic: An Explicit Model with Curative Factor, Symp. Biomath. (SYMOMATH 2014) , 1651(1), pp. 40-47, 2015.

Nisar, K.S., Logeswari, K., Vijayaraj, V., Baskonus, H.M. & Ravichandran, C., Fractional Order Modeling the Gemini Virus in Capsicum annuum with Optimal Control, Fractal Fract., 6(2), pp. 1-19, 2022. DOI: 10.3390/fractalfract6020061.

Anggriani, N., Mardiyah, M., Istifadah, N. & Supriatna, A.K., Optimal Control Issues in Plant Disease with Host Demographic Factor and Botanical Fungicides Optimal Control Issues in Plant Disease with Host Demographic Factor and Botanical Fungicides, in IOP Conference Series: Materials Science and Engineering, 332(1), 012036, 2018.

Khan, M.A., Ali, K., Bonyah, E., Okosun, K.O., Islam, S. & Khan, A., Mathematical Modelling and Stability Analysis of Pine Wilt Disease with Optimal Control, Sci. Rep., 7(1), pp. 1-19, 2017.

Murwayi, A., Onyango, T. & Owour, B., Mathematical Analysis of Plant Disease Dispersion Model that Incorporates Wind Strength and Insect Vector at Equilibrium, Br. J. Math. Comput. Sci., 22(5), pp. 1-17, 2017. DOI: 10.9734/BJMCS/2017/33991.

Sajjad, A., Farman, M., Hasan, A. & Nisar, K.S., Transmission Dynamics of Fractional Order Yellow Virus in Red Chili Plants with the Caputo?Fabrizio Operator, Math. Comput. Simul., 207, pp. 347-368, 2023. DOI: 10.1016/j.matcom.2023.01.004.

Hussain, T., Ozair, M., Faizan, M., Jameel, S. & Nisar, K.S., Optimal Control Approach Based on Sensitivity Analysis to Retrench the Pine Wilt Disease, Eur. Phys. J. Plus, 136(7), pp. 1-27, 2021. DOI: 10.1140/epjp/s13360-021-01695-3.

Daly, A.M. & Walduck, G., Fusarium Wilt of Bananas (Panama Disease) (Fusarium oxysporum f. sp. cubense), 2006.

Inoue, I., Namiki, F. & Tsuge, T., Plant Colonization by the Vascular Wilt Fungus Fusarium oxysporum Requires FOW1, A Gene Encoding A Mitochondrial Protein, The Plant Cell, 14(8), pp. 1869-1883, 2002.

Pez-Vicente, L., Dita, M.A., & Martez-de la Parte, E., Technical Manual: Prevention and Diagnostic of Fusarium Wilt (Panama Disease) of Banana Caused by Fusarium oxysporum f. sp. Cubense. Tropical Race 4 (TR4). Prevention and Diagnostic of Fusarium Wilt (Panama Disease) of Banana Caused by Fusarium oxysporum f. sp. Cubense. Tropical Race 4 (TR4), in Worshop on Diagnosis of Fusarium Wilt, 2014, 4, pp. 1-74, 2015.

Rana, A., Sahgal, M. & Johri, B.N., Fusarium oxysporum: Genomics, Diversity and Plant?Host Interaction, in Developments in Fungal Biology and Applied Mycology, pp. 159-199, 2017.

Pietro, A.D., Madrid, M.P., Caracuel, Z., Delgado-Jarana, J. & Roncero, M. I., Fusarium oxysporum: Exploring the Molecular Arsenal of A Vascular Wilt Fungus, Mol. Plant Pathol., 4(5), pp. 315-325, 2003. DOI: 10.1046/J.1364-3703.2003.00180.X.

Ohara, T. & Tsuge, T., FoSTUA, Encoding A Basic Helix-Loop-Helix Protein, Differentially Regulates Development of Three Kinds of Asexual Spores, Macroconidia, Microconidia, and Chlamydospores, in the Fungal Plant Pathogen Fusarium oxysporum, Eukaryot. Cell, 3(6), pp. 1412-1422, 2004. DOI: 10.1128/EC.3.6.1412.

Ohara, T., Inoue, I., Namiki, F., Kunoh, H. & Tsuge, T., REN1 is Required for Development of Microconidia and Macroconidia, but Not of Chlamydospores, in the Plant Pathogenic Fungus Fusarium oxysporum, J. Genet., 166(1), pp. 113-124, 2004.

Madden, L.V., Effects of Rain on Splash Dispersal of Fungal Pathogens, Can. J. Plant Pathol., 19(2), pp. 225-230, 1997. DOI: 10.1080/07060669709500557.

Inch, S., Fernando, W.G.D. & Gilbert, J., Seasonal and Daily Variation in the Airborne Concentration of Gibberella zeae (Schw.) Petch Spores in Manitoba, Can. J. Plant Pathol., 27(3), pp. 357-363, 2005. DOI: 10.1080/07060660509507233.

Fernando, W.G., Miller, J.D., Seaman, W.L., Seifert, K. & Paulitz, T.C., Daily and Seasonal Dynamics of Airborne Spores of Fusarium graminearum and ther Fusarium Species Sampled over Wheat Plots, Can. J. Bot., 78(4), pp. 497-505, 2000. DOI: 10.1139/cjb-78-4-497.

Dutta, B., Searcy, J. & Coolong, T., Fusarium Wilt of Watermelon, UGA Coop, Ext. Bull, 2017.

Ma, L.J., Geiser, D.M., Proctor, R.H., Rooney, A.P., O'Donnell, K., et al., Fusarium Pathogenomics, 67, pp. 399-416, 2013. DOI: 10.1146/annurev-micro-092412-155650.

Kang, S., Demers, J., del Mar Jimenez-Gasco, M. & Rep, M., Fusarium oxysporum, Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens, pp. 99-119, 2014.

Schwartz, H.F., Gent, D.H., Franc, G.D. & Harveson, R.M., Fusarium Wilt, Dry Bean Production & Pest Management. Coop. Ext. Reg. Bull. A, 562, 115, 2004.

Van den Driessche, P. & Watmough, J., Reproduction Numbers and Sub-threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Math. Biosci., 180(1-2), pp. 29-48, 2002. DOI: 10.1016/S0025-5564(02)00108-6.

Choghadi, M.A. & Talebi, H.A., The Routh-Hurwitz Stability Criterion, Revisited: The Case of Multiple Poles on Imaginary Axis, IEEE Trans. Automat. Contr., 58(7), pp. 1866-1869, 2013.

Shaban, N., Modelling the Effects of Public Health Education in the Spread of Hepatitis B Disease, Appl. Math. Sci., 9(80), pp. 3967-3981, 2015. DOI 10.12988/ams.2015.44289.

Myung, I.J., Tutorial on Maximum Likelihood Estimation, J. Math. Psychol., 47(1), pp. 90-100, 2003. DOI: 10.1016/S0022-2496(02)00028-7.

Pan, J.X. & Fang, K.T., Growth Curve Models and Statistical Diagnostics, Beijing: Springer Science and Business Media New York, 2002.

Martin, P.J., Topper, C.P., Bashiru, R.A., Boma, F.D., De Waal, D., et al., Cashew Nut Production in Tanzania: Constraints and Progress through Integrated Crop Management, Crop Prot., 16(1), pp. 5-14, 1997. DOI: 10.1016/S0261-2194(96)00067-1.

Chan, M.S. & Jeger, M.J., An Analytical Model of Plant Virus Disease Dynamics with Roguing and Replanting, J. Appl. Ecol., 31(3), pp. 413-427, 1994. DOI: 10.2307/2404439.

Collins, O.C. & Duffy, K.J., Optimal Control of Maize Foliar Diseases using the Plants Population Dynamics, Acta Agric. Scand., Section B-Soil & Plant Science, 66(1), pp. 20-26, 2016. DOI: 10.1080/09064710.2015.1061588.

Chitnis, N., Hyman, J.M. & Cushing, J.M., Determining Important Parameters in the Spread of Malaria through the Sensitivity Analysis of A Mathematical Model, Bull. Math. Biol., 70, pp. 1272-1296, 2008. DOI: 10.1007/s11538-008-9299-0.

Arriola, L. & Hyman, J.M., Sensitivity Analysis for Uncertainty Quantification in Mathematical Models, In Mathematical and statistical estimation approaches in epidemiology, pp. 195-247, 2009.

Phaijoo, G.R. & Gurung, D.B., Sensitivity Analysis of {SEIR-SEI} Model of Dengue Disease, GAMS J. Math. Math. Biosci., 6, pp. 41-50, 2018.

Francioli, D., van Rijssel, S.Q., van Ruijven, J., Termorshuizen, A.J., Cotton, T.A., et al., Plant Functional Group Drives the Community Structure of Saprophytic Fungi in A Grassland Biodiversity Experiment, Plant and Soil, 461(1?2), pp. 91-105, 2021. DOI: 10.1007/s11104-020-04454-y.

Crowther, T.W., Boddy, L. & T Jones, H., Functional and Ecological Consequences of Saprotrophic Fungus-Grazer Interactions, The ISME J., 6(11), pp. 1992-2001, 2012. DOI: 10.1038/ismej.2012.53.

Downloads

Published

2023-10-04

Issue

Section

Articles