Magnetoresistance Features at the Magnetic Field-Induced Phase Transition in FeRh Thin Films


  • Aleksei S. Komlev Faculty of Physics, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
  • Rodion A. Makarin Faculty of Physics, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
  • Viktoria E. Maltseva Institute of Natural Sciences, Ural Federal University, 620083, Yekaterinburg, Russia
  • Vladimir I. Zverev Faculty of Physics, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
  • Alexey S. Volegov Institute of Natural Sciences, Ural Federal University, 620083, Yekaterinburg, Russia
  • Nikolai S. Perov Faculty of Physics, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia



first-order phase transition, magnetoresistance, thin film, iron-rodium, magnetization


The causes of the appearance of first-order magnetic phase transitions remain a mystery. FeRh alloy is a classical material where a first-order magnetic phase transition occurs. The authors of this article studied the phase transition from the antiferromagnetic state to the ferromagnetic state in FeRh alloy. Comparison of the magnetometry and transport properties results allowed us to determine a number of differences in the mechanisms of the phase evolution during magnetic field and temperature induced transition. This article notes the priority of the rearrangement of the micromagnetic structure of the ferromagnetic phase as a result of the induction of a phase transition by a magnetic field. The main feature of the magnetic field induced phase transition compared to the temperature induced one is the change in the micromagnetic structure of the ferromagnetic phase. The growth of a ferromagnetic phase with less scattering fields leads to asymmetric behavior when a phase transition is induced near the metastable state. We also focused on the importance of taking into account the effect of magnetostriction when analyzing the evolution of the phase transition, which leads to the irreversibility of the phase transition near a zero magnetic field.


Dzekan, D., Waske, A., Nielsch, K., & Fler, S., Efficient and Affordable Thermomagnetic Materials for Harvesting Low Grade Waste Heat, APL Materials, 9(1), pp. 011105, 2021.

Albertini, F., Bennati, C., Bianchi, M., Branchini, L., Cugini, F., et al., Preliminary Investigation on a Rotary Magnetocaloric Refrigerator Prototype, Energy Procedia, 14, pp. 1288-1293, 2017.

Modak, R., Murata, M., Hou, D., Miura, A., Iguchi, R., et al. Phase-Transition-Induced Giant Thomson Effect for Thermoelectric Cooling, Applied Physics Reviews, 9(1), pp. 011414, 2022.

Komlev, A. S., Karpenkov, D. Y., Kiselev, D. A., Ilina, T. S., Chirkova, A., et al., Ferromagnetic Phase Nucleation and Its Growth Evolution in FeRh Thin Films, Journal of Alloys and Compounds, 874, pp. 159924, 2021.

A. S. Komlev & V. I. Zverev, Chapter 14 ? Magnetocaloric Effect for Medical Applications, in Magnetic Materials and Technologies for Medical Applications, edited by A. M. Tishin Woodhead Publishing, pp. 437-467, 2022.

A. S. Komlev, R. R. Gimaev, and V. I. Zverev, Smart Magnetocaloric Coatings for Implants: Controlled Drug Release for Targeted Delivery, Physics Open, 7, pp. 100063, 2021.

Gimaev, R. R., Vaulin, A. A., Gubkin, A. F., & Zverev, V. I., Peculiarities of Magnetic and Magnetocaloric Properties of Fe?Rh Alloys in the Range of Antiferromagnet?Ferromagnet Transition, Physics of Metals and Metallography, 121, pp. 823-850, 2020.

Almeida, T. P., Temple, R., Massey, J., Fallon, K., McGrouther, D., Moore, T., Marrows ?.H. & McVitie, S., Quantitative TEM Imaging of the Magnetostructural and Phase Transitions in FeRh Thin Film Systems, Scientific Reports, 7(1), pp. 17835, 2017.

Almeida, T. P., McGrouther, D., Temple, R., Massey, J., Li, Y., Moore, T., Marrows ?.H. & McVitie, S., Direct Visualization of the Magnetostructural Phase Transition in Nanoscale FeRh Thin Films Using Differential Phase Contrast Imaging, Phys. Rev. Materials, 4(3), pp. 034410, 2020.

Lu, W., Xu, Y., Fang, X., Song, Y., & Li, X., Kinetics of First Order Magnetostructural Transition in Single Crystalline FeRh Thin Film, in 2015 IEEE Magnetics Conference (INTERMAG) (2015), pp. 1-1, 2015.

Keavney, D. J., Choi, Y., Holt, M. V., Uhl, V., Arena, D., Fullerton, E. E., Ryan P.J., Kim, J. W., Phase Coexistence and Kinetic Arrest in the Magnetostructural Transition of the Ordered Alloy FeRh, Scientific Reports, 8(1), pp. 1778, 2018.

L. I. Vinokurova, A. V. Vlasov, & M. Pardavi?Horvh, Pressure Effects on Magnetic Phase Transitions in FeRh and FeRhIr Alloys, physica status solidi (b), 78(1), pp. 353-357, 1976.

N. V. Baranov, S. V. Zemlyanski, & K. Kamenev, Electrical Resistivity and Phase Transitions in FeRh Based Compounds: Influence of Spin Fluctuations, in Itinerant Electron Magnetism: Fluctuation Effects, edited by D. Wagner, W. Brauneck, and A. Solontsov, pp. 345-351, 1998.

Mankovsky, S., Polesya, S., Chadova, K., Ebert, H., Staunton, J. et al., Temperature-Dependent Transport Properties of FeRh, Phys. Rev. B, 95(15), pp. 155139, 2017.

Lee, Y., Liu, Z. Q., Heron, J. T., Clarkson, J. D., Hong, et al., Large Resistivity Modulation in Mixed-Phase Metallic Systems, Nat Commun, 6(1), pp. 5959, 2015.

V Rodionov, A Amirov, M Annaorazov, E Lderanta, A Granovsky, A Aliev, V Rodionova, Thermal Hysteresis Control in Fe49Rh51 Alloy through Annealing Process, Processes, 9(5), pp. 772, 2021.

Suzuki, I., Naito, T., Itoh, M., & Taniyama, T., Barkhausen-like Antiferromagnetic to Ferromagnetic Phase Transition Driven by Spin Polarized Current, Appl. Phys. Lett., 107(8), pp. 082408, 2015.

Ramli, R., Hartono, Z., Sanjaya, E., Aminudin, A., Khairurrijal, K., et. al., Novel Ternary CoFe204/Cu0/CoFe204 as a Giant Magne Magnetoresistance Sensor, Journal of Mathematical and Fundamental Sciences, 48(3), pp. 230-240, 2016.

A.-M. Pradipto & K. Nakamura, Slater-Pauling-like Behavior of Spin Hall Conductivity in Pt-Based Superlattices., Journal of Mathematical & Fundamental Sciences, 53(3), pp. 369-379, 2021.

J. M. Lommel, Magnetic and Electrical Properties of FeRh Thin Films, Journal of Applied Physics, 37(3), pp.1483-1484, 1966.

C. J. Schinkel & R. Hartog, Magnetization and Electrical Resistivity of Near Equi-Atomic FeRh Alloys in Fields up to 370 KOe, in AIP Conference Proceedings, 10(1), pp. 1365-1367, 1973.

S. A. Nikitin, Giant Elastocaloric Effect in FeRh Alloy, Physics Letters A, 171(3-4), pp. 234-236 ,1992.

Suzuki, I., Naito, T., Itoh, M., Sato, T., & Taniyama, T., Clear Correspondence between Magnetoresistance and Magnetization of Epitaxially Grown Ordered FeRh Thin Films, Journal of Applied Physics, 109(7), pp. 07C717, 2011.

J. A. Arregi, O. Caha, & V. Uhl, Evolution of Strain across the Magnetostructural Phase Transition in Epitaxial FeRh Films on Different Substrates, Phys. Rev. B, 101(17), pp. 174413, 2020.

Hashi, S., Yanase, S., Okazaki, Y., & Inoue, M., A Large Thermal Elasticity of the Ordered FeRh Alloy Film with Sharp Magnetic Transition, IEEE Transactions on Magnetics, 40(4), pp. 2784-2786, 2004.

Xie, Y., Zhan, Q., Shang, T., Yang, H., Wang, B., Tang, J., & Li, R. W., Effect of Epitaxial Strain and Lattice Mismatch on Magnetic and Transport Behaviors in Metamagnetic FeRh Thin Films, AIP Advances, 7(5), pp. 056314, 2017.

Y Xie, Q Zhan, T Shang, H Yang, Y Liu, B Wang, RW Li, Electric Field Control of Magnetic Properties in FeRh/PMN-PT Heterostructures, AIP Advances, 8(5), pp. 055816, 2018.

Chen, J., Ma, J., Zhang, Y., Bao, S., Wu, et al., Strain Modulated Ferromagnetic to Antiferromagnetic Transition in FeRh/BaTiO3 (001) Heterostructures, Journal of Applied Physics, 121(19), pp. 194101, 2017.

Amirov, A. A., Rodionov, V. V., Komanicky, V., Latyshev, V., Kaniukov, E. Y., & Rodionova, V. V., Magnetic Phase Transition and Magnetoelectric Coupling in FeRh/PZT Film Composite, Journal of Magnetism and Magnetic Materials, 479, pp. 287-290, 2019.

Merkel, D. G., Hegedu?s, G., Gracheva, M., De, A., Ill, L., et al., A Three-Dimensional Analysis of Magnetic Nanopattern Formation in FeRh Thin Films on MgO Substrates: Implications for Spintronic Devices, ACS Appl. Nano Mater., 5(4), pp. 5516-5526, 2022.

Komlev, A. S., Karpenkov, D. Y., Gimaev, R. R., Chirkova, A., Akiyama, A., et al., Correlation between Magnetic and Crystal Structural Sublattices in Palladium-Doped FeRh Alloys: Analysis of the Metamagnetic Phase Transition Driving Forces, Journal of Alloys and Compounds, 898, pp. 163092, 2022.

Lengyel, A., Bazs G., Chumakov, A. I., Nagy, D. L., Heged?s, G., et al., Synergy Effect of Temperature, Electric and Magnetic Field on the Depth Structure of the FeRh/BaTiO3 Composite Multiferroic, Materials Science and Engineering: B, 285, pp. 115939, 2022.

Massey, J. R., Temple, R. C., Almeida, T. P., Lamb, R., Peters, N. A., et al., Asymmetric Magnetic Relaxation Behavior of Domains and Domain Walls Observed through the FeRh First-Order Metamagnetic Phase Transition, Phys. Rev. B, 102(14), pp. 144304, 2020.

Komlev, A. S., Makarin, R. A., Ilina, T. S., Kiselev, D. A., Chirkova, et al., 3D Time-Resolved Analysis of the Evolution Metamagnetic Phase Transition in FeRh System, arXiv:2211.15984.

N. V. Baranov & E. A. Barabanova, Electrical Resistivity and Magnetic Phase Transitions in Modified FeRh Compounds, Journal of Alloys and Compounds 219(1-2), pp. 139-148 , 1995.

Jimez, M. J., Komlev, A. S., Gimaev, R. R., Zverev, V. I., & Cabeza, G. F., Electronic and Thermoelectric Properties of FeRh Pd-Doped Alloys: Ab Initio Study, Journal of Magnetism and Magnetic Materials, 538, pp. 168258, 2021.