Particle Size Optimization of Melinjo (Gnetum gnemon L.) Seed Hardshell: A Potential Antioxidant Alternative

Authors

  • Marlina Indriastuti School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
  • I Ketut Adnyana School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
  • Rika Hartati School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
  • Heni Rachmawati School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2024.56.1.2

Keywords:

melinjo seed hardshell, nanoparticles, resveratrol characterization, ballmilling, stilbenoid group

Abstract

Natural ingredients can have extraordinary potential as alternative medicines due to their accessibility and cost-effectiveness. Application of these ingredients should consider solubility and permeability, which determine the success of pharmaceutical characteristics formulation and biological activity indication. In this context, physical manipulation, specifically particle size reduction, is an effective strategy to address these issues. Previous research has explored active compounds in the stilbenoid group, found in the outer skin, hard shell, and endosperm of melinjo (Gnetum gnemon L.) seeds, functioning as antioxidant. Based on the potential as antioxidant, stilbenoid compounds, including resveratrol, contained in melinjo seed hardshell have shown significant pharmacological effects. Therefore, this research aimed to investigate the potential of melinjo seed hardshell extract as a natural antioxidant alternative by modifying the particle size through a grinding process to obtain nanoparticles. The analysis was carried out using ball milling to enhance the solubility of melinjo seed hardshell extract by increasing the saturated solubility and surface area of the particles. The results showed that the total phenol content and the antioxidant power increased significantly (p < 0.05) after ball milling. Melinjo seed hardshell nanoextract is reported herein as a promising source of natural antioxidant from local Indonesian plants.

References

Saraswaty, V., Ketut Adnyana, I., Pudjiraharti, S., Mozef, T., Insanu, M., Kurniati, N.F. & Rachmawati, H., Fractionation Using Adsorptive Macroporous Resin HPD-600 Enhances Antioxidant Activity of Gnetum gnemon L. Seed Hard Shell Extract, Journal of Food Science and Technology, 54(10), pp. 3349-3357, 2017.

Pande, H., Kumar, B. & Varshney, V.K., Phenolic Composition and Antioxidant Capacity of Biomass Residue (Leaves) Generated from Bambusa Tulda Plantations, Waste and Biomass Valorization, 8(7), pp. 2349-2362, 2017.

Mohanty, C., Das, M. & Sahoo, S.K., Emerging Role of Nanocarriers to Increase the Solubility and Bioavailability of Curcumin, Expert Opinion on Drug Delivery, 9(11), pp. 1347-1364, 2012.

Christovam, A.C., Theodoro, V., Mendon, F.A.S., Esquisatto, M.A.M., Dos Santos, G.M.T. & do Amaral, M.E.C., Activators of SIRT1 in Wound Repair: An Animal Model Study, Archives of Dermathology Research, 311(3), pp. 193-201, 2019.

Li, J., Zhang, C.X., Liu, Y.M., Chen, K.L. & Chen, G., A Comparative Study of Anti-aging Properties and Mechanism: Resveratrol and Caloric Restriction, Oncotarget, 8(39), pp. 65717-65729, 2017.

Sarubbo, F., Esteban, S., Miralles, A. & Moranta, D., Moranta, D., Effects of Resveratrol and Other Polyphenols on Sirt1: Relevance to Brain Function during Aging, Current Neuropharmacology, 16(2), pp. 126-136, 2017.

Pratiwi, E.T., Sediaan Suplemen Serbuk Submikron Endosperma Biji Melinjo (Gnetum gnemon L.) yang Mengandung Senyawa Stilbenoid sebagai Anti Aging, Bandung, Indonesia: Institut Teknologi Bandung, 2019.

Tani, H., Hikami, S., Iizuna, S., Yoshimatsu, M., Asama, T., Ota, H. ... & Higaki, K., Pharmacokinetics and Safety of Resveratrol Derivatives in Humans after Oral Administration of Melinjo (Gnetum gnemon L.) Seed Extract Powder, Journal of Agricultural and Food Chemistry, 62(8), pp. 1999-2007, 2014.

Nunes, R., Silva, C. & Chaves, L., Tissue-based In Vitro and Ex Vivo Models for Intestinal Permeability Studies, Concepts and Models for Drug Permeability Studies, pp. 203-236, 20176.

Nordgard, C.T., Nonstad, U., Older, M., Espevik, T. & Draget, K.I., Alterations in Mucus Barrier Function and Matrix Structure Induced by Guluronate Oligomers, Biomacromolecules, 15(6), pp. 2294-2300, 2014.

Gao, L., Zhang, D. & Chen, M., Drug Nanocrystals for the Formulation of Poorly Soluble Drugs and Its Applications as A Potential Drug Delivery System, Journal of Nanoparticle Research, 10, pp. 845-862, 2008.

Villalba, J.M. & Alca, F.J., Sirtuin Activator and Inhibitors, Biofactors, 38(5), 349-359, 2012.

Abbas, O., Compe, G., Larondelle, Y., Pompeu, D., Rogez, H. & Baeten, V., Phenolic Compound Explorer: A Mid-infrared Spectroscopy Database, Vibrational Spectroscopy, 92, pp. 111-118, 2017.

Grabowska, W., Sikora, E. & Bielak-Zmijewska, A., A Promising Target in Slowing Down the Ageing Process, Biogerontology, 18(4), pp. 447-476, 2017.

Rivest, J.B. & Jain, P.K., Cation Exchange on the Nanoscale: An Emerging Technique for New Material Synthesis, Device Fabrication, and Chemical Sensing, Chemical Society Reviews, 42(1), pp. 89-96, 2013.

Braidy, N., Guillemin, G.J., Mansour, H., Chan-Ling, T., Poljak, A. & Grant, R., Grant, R., Age Related Changes in NAD+ Metabolism Oxidative Stress and Sirt1 Activity in Wistar Rats, PLoS One, 6(4), e19194, 2011.

Bai, B., Vanhoutte, P.M. & Wang, Y., Loss-of-SIRT1 Function during Vascular Ageing: Hyperphosphorylation Mediated by Cyclin-dependent Kinase 5, Trends in Cardiovascular Medicine, 24(2), pp. 81-84, 2014.

Vassallo, P.F., Simoncini, S., Ligi, I., Chateau, A.L., Bachelier, R., Robert, S., Morere, J., Fernandez, S., Guillet, B., Marcelli, M., Tellier, E., Pascal, A., Simeoni, U., Anfosso, F., Magdinier, F., Dignat-George, F. & Sabatier, F., Accelerated Senescence of Cord Blood Endothelial Progenitor Cells in Premature Neonates is Driven by SIRT1 Decreased Expression, Blood, 123(13), pp. 2116-2126, 2014.

Hwang, J.W., Yao, H., Caito, S., Sundar, I.K. & Rahman, I., Redox Regulation of SIRT1 Inflammation and Cellular Senescence, Free Radical Biology and Medicine, 61, pp. 95-110, 2013.

Christovam, A.C., Theodoro, V., Mendon, F.A.S., Esquisatto, M.A.M., Dos Santos, G.M.T. & do Amaral, M.E.C., Activators of SIRT1 in Wound Repair: An Animal Model Study, Archives of Dermathology Research, 311(3), pp. 193-201, 2019.

Wang, X., Parvathaneni, V., Shukla, S.K., Kulkarni, N.S., Muth, A., Kunda, N.K. & Gupta, V., Inhalable Resveratrol-cyclodextrin Complex Loaded Biodegradable Nanoparticles for Enhanced Efficacy Against Non-small Cell Lung Cancer, International Journal of Biological Macromolecules, 164, pp. 638-650, 2020.

Ali, M., Benfante, V., Di Raimondo, D., Salvaggio, G., Tuttolomondo, A. & Comelli, A., Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as An Anticancer Agent, Pharmaceuticals, 17(1), 126, 2024.

Li, Z. & Gu, L., Effects of Mass Ratio, pH, Temperature, and Reaction Time on Fabrication of Partially Purified Pomegranate Ellagitannin-gelatin Nanoparticles, Journal of Agricultural and Food Chemistry, 59(8), pp. 4225-4231, 2011.

Li, Z., Jiang, H., Xu, C. & Gu, L., A Review: Using Nanoparticles to Enhance Absorption and Bioavailability of Phenolic Phytochemicals, Food Hydrocolloids, 43, pp. 153-164, 2015.

Saraswaty, V., Suparta, N.W.W.P., Setiyanto, H., Rachmawati, H. & Adnyana, I.K., Transformation of Melinjo Seed Micropowders into Nanopowders Enhances Extractability of Phenolic Compounds and Tyrosinase Inhibitory Activity, Sains Malaysiana, 48(5), pp. 983-990, 2019.

Sandri, G., Bonferoni, M.C., Rossi, S., Caramella, C.M. & Ferrari, F., Effects of Particle Size, Surface Nature and Crystal Type on Dissolution Rate, Particles and Nanoparticles in Pharmaceutical Products: Design, Manufacturing, Behavior and Performance, 29, pp. 303-328, 2018.

Yao, X., Yu, L. & Zhang, G.G., Impact of Crystal Nuclei on Dissolution of Amorphous Drugs, Molecular Pharmaceutics, 20(3), pp. 1796-1805, 2023.

Budiman, A., Rusdin, A. & Aulifa, D.L., Current Techniques of Water Solubility Improvement for Antioxidant Compounds and Their Correlation with Its Activity: Molecular Pharmaceutics, Antioxidants, 12(2), 378, 2023.

Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J.T., Kim, H. ... & Lee, J., Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability, Asian Journal of Pharmaceutical Sciences, 9(6), pp. 304-316, 2014.

Downloads

Published

2024-08-08

How to Cite

Indriastuti, M., Adnyana, I. K. ., Hartati, R. ., & Rachmawati, H. . (2024). Particle Size Optimization of Melinjo (Gnetum gnemon L.) Seed Hardshell: A Potential Antioxidant Alternative. Journal of Mathematical and Fundamental Sciences, 56(1), 18-29. https://doi.org/10.5614/j.math.fund.sci.2024.56.1.2

Issue

Section

Articles