Bioinspired Superhydrophobic Finishing of Cotton Fabric Using Carnauba Wax and Biosilica Nanoparticles with a Layer-by-layer Deposition Method

Authors

  • Mohamad Widodo Postgraduate Program, Master of Applied Sciences in Textile Engineering and Apparel Technology, Politeknik STTT Bandung (Polytechnic of Textile Technology), Bandung, Indonesia
  • Rino Rakhmata Mukti Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
  • Sri Yuliani Center for Agroindustry Research, National Research and Innovation Agency, Indonesia
  • Amalia Putri Department of Textile Chemistry, Politeknik STTT Bandung (Polytechnic of Textile Technology), Bandung, Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2024.56.2.2

Keywords:

carnauba wax, layer-by-layer (LBL), RHA silica nanoparticles, self-assembly, superhydrophobic, water repellent

Abstract

Hydrophobic surface modification has great potential for applications in everyday life, particularly in textiles such as sportswear, health, protection, and other non-clothing textiles. Improving water repellence and high-level hydrophobicity in textile materials has so far been difficult to achieve with chemicals other than PFAS (per- and polyfluoroalkyl substances) due to environmental and health concerns. In this research, biosilica nanoparticles from rice husk ash (RHA) and carnauba wax were deposited alternately using a layer-by-layer (LBL) method to create a surface with a combination of nanoscale roughness and hydrophobicity resembling the lotus effect. Chitosan was used to cationize the surface of cotton fibre and bridge the negatively charged nanobiosilica particles and carnauba wax. The hydrophobicity increased with the number of layers of nanosilica-chitosan-wax (SNP/CHI/SCW), reaching a contact angle of 140.2 (close to superhydrophobic) with three layers of SNP/CHI/SCW, followed by decreased air permeability from 19.4 cm3/cm2/s for untreated cotton to 13.3 cm3/cm2/s for treated cotton, with a total decrease of 31.44%. Cotton fabric was successfully modified from hydrophilic to superhydrophobic using an LBL coating of RHA silica nanoparticles and carnauba wax.

References

Endiiarova, E.V., Osipov, A.A., Alexandrov, S.E. & Shakhmin, A.L., Superhydrophobic Textile: Treatment in Aqueous Solutions of Aluminum Salts, Cellulose, 28(11), pp. 7455?7464, 2021. doi: 10.1007/s10570-021-04005-3.

Hoefnagels, H.F., Wu, D., De With, G. & Ming, W., Biomimetic Superhydrophobic and Highly Oleophobic Cotton Textiles, Langmuir, 23(26), 2007. doi: 10.1021/la702174x.

Li, X.M., Reinhoudt, D. & Crego-Calama, M., What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces, Chem. Soc. Rev., 36(8), p. 1350, 2007. doi: 10.1039/b602486f.

Liu, Y., Xin, J. H. & Choi, C.-H., Cotton Fabrics with Single-Faced Superhydrophobicity, Langmuir, 28(50) pp. 17426?17434, Dec. 2012, doi: 10.1021/la303714h.

Ma, M., Hill, R.M., Minglin, M. H., Randal, M. Superhydrophobic Surfaces, Current Opinion in Colloid and Interface Science, 11(4), pp. 193-202, 2006, doi: 10.1016/j.cocis.2006.06.002.

Riaz, S., Ashraf, M., Hussain, T. & Hussain, M.T., Modification of Silica Nanoparticles to Develop Highly Durable Superhydrophobic and Antibacterial Cotton Fabrics, Cellulose, 26(8), pp. 5159?5175, April 2019. doi: 10.1007/S10570-019-02440-X.

Roach, P., Shirtcliffe, N.J. & Newton, M.I., Progess in Superhydrophobic Surface Development, Soft Matter, 4(2), p. 224, 2008. doi: 10.1039/b712575p.

Khalil-Abad, M.S., & Yazdanshenas, M.E., Superhydrophobic Antibacterial Cotton Textiles, Journal of Colloid and Interface Science, 351(1), pp. 293-298, 2010. doi: 10.1016/j.jcis.2010.07.049.

Teisala, H., Tuominen, M. & Kuusipalo J., Superhydrophobic Coatings on Cellulose-based Materials: Fabrication, Properties, and Applications, Advanced Materials Interfaces, 1(1), pp. 1-20, Wiley-VCH Verlag, Feb. 01, 2014. doi: 10.1002/admi.201300026.

Wei, D.W., Wei, H., Gauthier, A.C., Song, J., Jin, Y. & Xiao, H., Superhydrophobic Modification of Cellulose and Cotton Textiles: Methodologies and Applications, Journal of Bioresources and Bioproducts, 5(1), pp. 1-15, Feb. 2020. doi:

1016/J.JOBAB.2020.03.001.

Wu, J., Li, J., Wang, Z., Yu, M., Jiang, H., Li, L., Zhang, B., Designing breathable superhydrophobic cotton fabrics, RSC Advances, 5(35), pp. 27752?27758, Mar. 2015, doi: 10.1039/C5RA01028D.

Xue, C.H., Jia, S.T., Zhang, J., Tian, L.Q., Chen, H.Z. & Wang, M., Preparation of Superhydrophobic Surfaces on Cotton Textiles, Science and Technology of Advanced Materials, 9(3), pp. 1-7, 2008. doi: 10.1088/1468-6996/9/3/035008.

Lafuma, A. & Qu D., Superhydrophobic States, Nature Materials, 2(7), pp. 457?460, Jun. 2003. doi: 10.1038/nmat924.

Wang, S., Liu, K., Yao, X. & Jiang, L., Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications, Chem. Rev., 115(16), pp. 8230?8293, Aug. 2015. doi: 10.1021/CR400083Y/ASSET/CR400083Y.FP.PNG_V03.

Barthlott, W. & Neinhuis, C., Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces, Planta, 202(1), pp. 1?8, 1997. doi: 10.1007/S004250050096.

Barthlott, W., Self-cleaning Surfaces in Plants: The Discovery of the Lotus Effect as a Key Innovation for Biomimetic Technologies, Handbook of Self?Cleaning Surfaces and Materials: From Fundamentals to Applications. Vol. 1, pp. 359?369, Jan. 2023. doi: 10.1002/9783527690688.CH15.

Qu D., Wetting & Roughness, Annual Review of Materials Research, 38, pp. 71?99, August 2008, doi:10.1146/ANNUREV.MATSCI. 38.060407.132434/CITE/REFWORKS.

Yamamoto, M., Nishikawa, N., Mayama, H., Nonomura, Y., Yokojima, S., Nakamura, S., Uchida, K., Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf, Langmuir, 31(26), pp. 7355?7363, Jul. 2015, doi: 10.1021/ACS.LANGMUIR.5B00670.

Bittoun, E. & Marmur, A., The Role of Multiscale Roughness in the Lotus Effect: Is it Essential for Super-Hydrophobicity?, Langmuir, 28(39), pp. 13933?13942, Oct. 2012. doi: 10.1021/LA3029512.

Gao, L. & McCarthy, T.J., Wetting 101, Langmuir, 25(24), pp. 14105?14115, Dec. 2009. doi: 10.1021/LA902206C.

Nosonovsky, M., Bhushan, B., Lotus Effect: Roughness-Induced Superhydrophobicity. Applied Scanning Probe Methods VII. NanoScience and Technology, Bhushan, B., Fuchs, H. (eds), 2007, Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37321-6_1

Zhao, R., Li, X., Sun, B., Zhang, Y., Zhang, D., Tang, Z., Chen, X., Wang, C., Electrospun Chitosan/Sericin Composite Nanofibers with Antibacterial Property As Potential Wound Dressings, International Journal of Biological Macromolecules, 68, pp. 92?97, Jul. 2014, doi: 10.1016/j.ijbiomac.2014.04.029.

Borah, M.P., Kalita, B.B., Jose, S. & Baruah, S., Fabrication of Hydrophobic Surface on Eri Silk/Wool Fabric Using Nano Silica Extracted from Rice Husk, Silicon, 15(16), pp. 7039?7046, Nov. 2023. doi: 10.1007/S12633-023-02568-3/METRICS.

Borah, M.P., Jose, S., Kalita, B.B., Shakyawar, D.B. & Pandit, P., Water Repellent Finishing on Eri Silk Fabric using Nano Silica, The Journal of Textile Institute, 111(5), pp. 701?708, May 2019. doi: 10.1080/00405000.2019.1659470.

Tavakoli, H., Ghanbari-Kalajahi, H., Khajeh-Amiri, A., Rezaei, M., Amirkhani, R., Gholampour, M., Hassanzadeh, M., Hydrophobic Treatment of Cotton Fabrics Using Recycled Silica Nanoparticles from Rice Bran Ash, Journal of Nanostructures, 13(1), pp. 110?121, Jan. 2023, doi: 10.22052/JNS.2023.01.013.

Xue, C.H., Jia, S.T., Zhang, J. & Tian, L.Q., Superhydrophobic Surfaces on Cotton Textiles by Complex Coating of Silica Nanoparticles and Hydrophobization, Thin Solid Films, 517(16), pp. 4593-4598, 2009. doi: 10.1016/j.tsf.2009.03.185.

Gashti, M.P., Alimohammadi, F. & Shamei, A., Preparation of Water-Repellent Cellulose Fibers using a Polycarboxylic Acid/Hydrophobic Silica Nanocomposite Coating, Surface Coatings Technology, 206(14), pp. 3208?3215, March 2012. doi: 10.1016/J.SURFCOAT.2012.01.006.

Jeong, S.A. & Kang, T.J., Superhydrophobic and Transparent Surfaces on Cotton Fabrics Coated with Silica Nanoparticles for Hierarchical Roughness, Textile Research Journal, 87(5), pp. 552?560, March 2017. doi: 10.1177/0040517516632477.

Ebert, D. & Bhushan, B., Durable Lotus-effect Surfaces with Hierarchical Structure using Micro-and Nanosized Hydrophobic Silica Particles, Journal of Colloid and Interface Science, 368(1), pp. 584?591, 2012. https://doi.org/10.1016/j.jcis.2011.09.049

Zhou, H., Wang, H., Niu, H., Gestos, A. & Lin, T., Robust, Self-healing Superamphiphobic Fabrics Prepared by Two-step Coating of Fluoro-Containing Polymer, Fluoroalkyl Silane, and Modified Silica Nanoparticles, Advanced Functional Materials, 23(13), pp. 1664?1670, Apr. 2013. doi: 10.1002/adfm.201202030.

Joshi, M., Bhattacharyya, A., Agarwal, N. & Parmar, S. Nanostructured Coatings for Super Hydrophobic Textiles, Bulletin of Material Science, 35(6), pp. 933?938, Nov. 2012. doi: 10.1007/S12034-012-0391-6/METRICS.

Antara News Agency, Statistics Indonesia projects rice production up 2.29 percent in 2022 - ANTARA News, Antara News, Oct. 17, 2022. https://en.antaranews.com/news/255289/statistics-indonesia-projects-rice-production-up-229-percent-in-2022 (accessed Aug. 14, 2024).

International Rice Research Institute, Rice husk - IRRI Rice Knowledge Bank. http://www.knowledgebank.irri.org/step-by-step-production/postharvest/rice-by-products/rice-husk (accessed Aug. 15, 2024).

Bashari, A., Salehi K, A. H., & Salamatipour, N., Bioinspired and Green Water Repellent Finishing of Textiles using Carnauba Wax and Layer-by-layer Technique, The Journal of Textile Institute, 111(8), pp. 1148?1158, Aug. 2019. doi: 10.1080/00405000.2019.1686881.

Forsman, N., Lozhechnikova, A., Khakalo, A., Johansson, L.S., Vartiainen, J. & terberg, M., Layer-by-layer Assembled Hydrophobic Coatings for Cellulose Nanofibril Films and Textiles, Made of Polylysine and Natural Wax Particles, Carbohydrate Polymer, 173, pp. 392?402, Oct. 2017. doi: 10.1016/J.CARBPOL.2017.06.007.

Forsman, N., Johansson, L.S., Koivula, H., Tuure, M., Krinen, P. & terberg, M., Open Coating with Natural Wax Particles Enables Scalable, Non-toxic Hydrophobation of Cellulose-based Textiles, Carbohydrate Polymer, 227, p. 115363, Jan. 2020. doi: 10.1016/J.CARBPOL.2019.115363.

Celik, N., Torun, I., Ruzi, M., Esidir, A. & Onses, M.S., Fabrication of Robust Superhydrophobic Surfaces by One-step Spray Coating: Evaporation Driven Self-assembly of Wax and Nanoparticles Into Hierarchical Structures, Chemical Engineering Journal, 396, p. 125230, Sep. 2020. doi: 10.1016/J.CEJ.2020.125230.

Setyawan, N., Hoerudin, Wulanawati, A. & Suismono, Yield and Properties of Nanobiosilica Extracted from Rice Husk using Technical Grade Chemicals: Effect of Extraction Temperatures and Times, IOP Conf. Ser. Earth Environ. Sci., 752(1), p. 012036, Apr. 2021. doi: 10.1088/1755-1315/752/1/012036.

Wu, S.H. & Lin, H.P., Synthesis of Mesoporous Silica Nanoparticles, Chem. Soc. Rev., 42(9), pp. 3862?3875, Apr. 2013. doi: 10.1039/C3CS35405A.

Ramadan, M.A., Samy, S., Abdulhady, M., Hebeish, A., Eco-Friendly Pretreatment of Cellulosic Fabrics with Chitosan and Its Influence on Dyeing Efficiency, Natural Dyes, Kumbasar, E.A. (ed.), Nov. 2011, doi: 10.5772/20097.

Winiati, W., Kasipah, C., Septiani, W., Novarini, E. & Yulina, R., Aplikasi Kitosan Sebagai Zat Anti Bakteri pada Kain Poliester-Selulosa dengan Cara Perendaman, Arena Tekstil, 31(1), Nov. 2016, doi: 10.31266/AT.V31I1.1448.

Stalder, A.F., Melchior, T., Mler, M., Sage, D., Blu, T. & Unser, M., Low-bond Axisymmetric Drop Shape Analysis for Surface Tension and Contact Angle Measurements of Sessile Drops, Colloids Surfaces A Physicochem. Eng. Asp., 364, pp. 72?81, Jul. 2010. doi: 10.1016/J.COLSURFA.2010.04.040.

Williams, D., Kuhn, A., Amann, M., Hausinger, M.B., Konarik, M. & Nesselrode, E.I., Computerised Measurement of Contact Angles, Galvanotechnik, 101(11), pp. 2502?2511, 2010.

Xu, P., Wang, H., Tong, R., Du, Q. & Zhong, W., Preparation and Morphology of Sio2/PMMA Nanohybrids by Microemulsion Polymerization, Colloid Polymer Science, 284(7), pp. 755?762, Apr. 2006. doi: 10.1007/S00396-005-1428-9/METRICS.

K.D. Silverstein R., Webster F., Spectrometric Identification of Organic Compounds, 7th ed. 2005.

Vahur, S., Teearu, A., Peets, P., Joosu, L. & Leito, I., ATR-FT-IR Spectral Collection of Conservation Materials in the Extended Region of 4000-80 Cm?1, Anal. Bioanal. Chem., 408(13), pp. 3373?3379, May 2016. doi: 10.1007/S00216-016-9411-5/METRICS.

Liu, X., Huang, L., Chen, H., Qian, M.C. & Ji, H., Pore Size Matching Up: A Novel Insight into Cotton Textile Aromatic Finishing, Flavour Fragr. J., 35(2), pp. 149?156, Mar. 2020. doi: 10.1002/ffj.3546.

Lozhechnikova, A., Bellanger, H., Michen, B., Burgert, I. & terberg, M., Surfactant-free Carnauba Wax Dispersion and its use for Layer-by-layer Assembled Protective Surface Coatings on Wood, Appl. Surf. Sci., 396, pp. 1273?1281, Feb. 2017. doi: 10.1016/J.APSUSC.2016.11.132.

Law, K.Y., Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right, J. Phys. Chem. Lett., 5(4), pp. 686?688, 2014. doi: 10.1021/jz402762h.

Downloads

Published

2024-11-05

How to Cite

Widodo, M., Mukti, R. R., Yuliani, S. ., & Putri, A. (2024). Bioinspired Superhydrophobic Finishing of Cotton Fabric Using Carnauba Wax and Biosilica Nanoparticles with a Layer-by-layer Deposition Method. Journal of Mathematical and Fundamental Sciences, 56(2), 98-117. https://doi.org/10.5614/j.math.fund.sci.2024.56.2.2

Issue

Section

Articles