Synthesis of Ternary Nanocomposites of MnO2/PANI/Maxsorb and their Performance as an Electrode Material for Supercapacitors

Authors

  • Aprilianti Nur'aini Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 UGM, 55281, Yogyakarta, Indonesia
  • Imam Prasetyo Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 UGM, 55281, Yogyakarta, Indonesia
  • Teguh Ariyanto Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 UGM, 55281, Yogyakarta, Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2025.57.2.2

Keywords:

manganese dioxide, Maxsorb, polyaniline, supercapacitor, ternary nanocomposite

Abstract

Increasing performance of supercapacitors can be achieved by using a composite of electrode materials. Nevertheless, selecting appropriate materials and determining the optimal combination composition remain significant challenges. In this research, a ternary composite of MnO2/polyaniline (PANI)/Maxsorb was studied. The combination of Maxsorb, PANI, and MnO? is a unique feature of this research, with Maxsorb acting as a porous structural framework; PANI enhancing electrical conductivity; and MnO? providing high pseudocapacitance. The ternary material was prepared by impregnation of MnO2 and PANI into the pores of Maxsorb carbon in a two-sequence procedure, i.e., (i) incipient wetness impregnation of Mn(NO3)2 into porous carbon followed by calcination to obtain MnO2/Maxsorb, and (ii) in situ polymerization of aniline monomer in the MnO2/Maxsorb, hence obtaining the final ternary nanocomposite of MnO2/PANI/Maxsorb. The electrochemical test using H2SO4 electrolyte (1 M) revealed that the ternary material outperformed single porous carbon or PANI as well as their binary nanocomposite in terms of properties such as energy density, power density, and capacitance. The ternary material had a specific surface area of around 2,078 m2 g-1, containing microporous and mesoporous structures. The material featured a specific capacitance up to 500 F g-1 and a power density of 37.6 kW kg-1 as well as an energy density of 62.69 Wh kg-1.

References

Simon, P. & Gogotsi, Y., Materials for Electrochemical Capacitors, Nat. Mater., 7(11), pp. 845-854, 2008.

Su, F., Poh, C.K., Chen, J.S., Xu, G., Wang, D., Li, Q., Lin, J. & Lou, X.W., Nitrogen-containing Microporous Carbon Nanospheres with Improved Capacitive Properties, Energy Environ. Sci., 4(3), pp. 717-724, 2011. doi: 10.1039/c0ee00277a.

Jiang, J., Li, Y., Liu, J., Huang, X., Yuan, C. & Lou, X.W., Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage, Adv. Mater., 24(38), pp. 5166-5180, 2012. doi: 10.1002/adma.201202146.

Zhai, Y., Dou, Y., Zhao, D., Fulvio, P.F., Mayes, R.T. & Dai, S., Carbon Materials for Chemical Capacitive Energy Storage, Adv. Mater., 23(42), pp. 4828-4850, 2011. doi: 10.1002/adma.201100984.

Wibowo, J. F., Prasetyo, I. & Ariyanto, T., PANI/Porous Carbon Palm Kernel Shell via In Situ Polymerization Method for Supercapacitor Electrode, Solid State Phenom., 345, pp. 123-130, 2023. doi: 10.4028/p-3A39kD.

Chen, W., Tao, X., Wei, D., Wang, H., Yu, Q. & Li, Y., High-Performance Supercapacitor based on Activated Carbon?MnO2?Polyaniline Composite, J. Mater. Sci. Mater. Electron., 27(2), pp. 1357-1362, 2016. doi: 10.1007/s10854-015-3897-z.

Nur?aini, A., Formulasi dan Karakterisasi Nanokomposit MnO2/Polianiline/Maxsorb untuk Material Elektroda Superkapasitor, Bachelor Thesis, Department of Chemical Engineering, Universitas Gadjah Mada, Yogyakarta, 2023.

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K.S.W., Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87(9-10), pp. 1051-1069, 2015. doi: 10.1515/pac-2014-1117.

Bednarczyk, K., Matysiak, W., Ta?ski, T., Janeczek, H., Schab-Balcerzak, E. & Libera, M., Effect of Polyaniline Content and Protonating Dopants on Electroconductive Composites, Sci. Rep., 11(1), pp. 1-11, 2021. doi: 10.1038/s41598-021-86950-4.

Kayal, S. & Chakraborty, A., Activated Carbon (Type Maxsorb-III) and MIL-101(Cr) Metal Organic Framework Based Composite Adsorbent for Higher CH4 Storage and CO2 Capture, Chem. Eng. J., 334, pp. 780-788, 2018. doi: 10.1016/j.cej.2017.10.080.

Liu, X.Y., Huang, M., Ma, H.L., Zhang, Z.Q., Gao, J.M., Zhu, Y.L., Han, X.J. & Guo, X. Y., Preparation of a Carbon-based Solid Acid Catalyst by Sulfonating Activated Carbon in A Chemical Reduction Process, Molecules, 15(10), pp. 7188-7196, 2010. doi: 10.3390/molecules15107188.

Shi, L., Wang, X., Lu, L., Yang, X. & Wu, X., Preparation of TiO2/Polyaniline Nanocomposite from A Lyotropic Liquid Crystalline Solution, Synth. Met., 159(23-24), pp. 2525-2529, 2009. doi: 10.3390/molecules15107188.

Mylarappa, M., Lakshmi, V.V., Mahesh, K.R.V., Nagaswarupa, H.P. & Raghavendra, N., A Facile Hydrothermal Recovery of Nano Sealed MnO2 Particle from Waste Batteries: An Advanced Material for Electrochemical and Environmental Applications, IOP Conf. Ser.: Mater. Sci. Eng., 149(1), 012178, 2016. doi: 10.1088/1757-899X/149/1/012178.

Long, D. A., Handbook of Vibrational Spectroscopy, Volumes 1-5. Edited by Chalmers, J. M. & Griffiths, P. R., John Wiley & Sons, p. 3862, 2005.

Belardi, G., Ballirano, P., Ferrini, M., Lavecchia, R., Medici, F., Piga, L. & Scoppettuolo, A., Characterization of Spent Zinc-Carbon and Alkaline Batteries by SEM-EDS, TGA/DTA and XRPD Analysis, Thermochim. Acta, 526(1-2), pp. 169-177, 2011. doi: 10.1016/j.tca.2011.09.012.

Kursunoglu, S. & Kaya, M., Dissolution and Precipitation of Zinc and Manganese Obtained from Spent Zinc-Carbon and Alkaline Battery Powder, Physicochem. Probl. Miner. Process, 50(1), pp. 41-55, 2014. doi: 10.5277/ppmp140104.

Furukawa, Y., Ueda, F., Hyodo, Y., Harada, I., Nakajima, T., and Kawagoe, T., Macromolecules, 21(5), pp. 1297-1305. 1988. doi: 10.1021/ma00183a020.

Cochet, M., Louarn, G., Quillard, S., Buisson, J.P. & Lefrant, S., Theoretical and Experimental Vibrational Study of Emeraldine in Salt Form. Part II, J. Raman Spectrosc., 31(12), pp. 1041-1049, 2000. doi: 10.1002/1097-4555(200012)31:12<1041::AID-JRS641>3.0.CO;2-R.

Xing, W., Qiao, S.Z., Ding, R.G., Li, F., Lu, G.Q., Yan, Z.F. & Cheng, H. M., Superior Electric Double Layer Capacitors Using Ordered Mesoporous Carbons, Carbon N.Y., 44(2), pp. 216-224, 2006. doi: 10.1016/j.carbon.2005.07.029.

Wang, H., Lin, J. & Shen, Z.X., Polyaniline (PANi) Based Electrode Materials for Energy Storage and Conversion, J. Sci. Adv. Mater. Devices, 1(3), pp. 225-255, 2016. doi: 10.1016/j.jsamd.2016.08.001.

Mishra, N., Shinde, S., Vishwakarma, R., Kadam, S., Sharon, M. & Sharon, M., MWCNTs Synthesized from Waste Polypropylene Plastics and Its Application in Super-capacitors, AIP Conf. Proc., 1538(1), pp. 228-236, 2013. doi: 10.1063/1.4810063.

Rustamaji, H., Prakosi, T., Devianto, H., Widiatmoko, P. & Nurdin, I., Design, Fabrication, and Testing of Supercapacitor Based on Nanocarbon Composite Material, ASEAN Journal of Chemical Engineering, 22(1), pp. 19-32, 2022. doi: 10.22146/ajche.70139.

Kumar, A., Rani S., and Chand S., Expanded Conformation of Macromolecular Chain in Polyaniline Nanorods, Appl. Phys. Lett., 89(10), 103110, 2006. doi: 10.1063/1.2345376.

Torre, C., Grossman, J., Bobko, A., and Bennewitz, M., Tuning the Size and Composition of Manganese Oxide Nanoparticles through Varying Temperature Ramp and Aging Time, PLOS ONE, 15(9), e0239034, 2020. doi: 10.1371/journal.pone.0239034.

Liu, X.-M., Fu, S.-Y., and Huang, C.-J., Synthesis, Characterization and Magnetic Properties of ?-MnO? Nanorods, Powder Technology, 154(2-3), 120-124, 2005. doi: 10.1016/j.powtec.2005.05.004.

Devi, R., Kumar, V., Kumar, S., Bulla, M., Sharma, S., & Sharma, A. Electrochemical Analysis of MnO2 (?, ?, and ?)-based Electrode for High-Performance Supercapacitor Application, Applied Sciences, 13(13), 7907, 2019. https://doi.org/10.3390/app13137907.

Kaushal, I., Sharma, A. K., Saharan, P., Sadasivuni, K. K., and Duhan, S., Superior Architecture and Electrochemical Performance of MnO? Doped PANI/CNT Graphene Fastened Composite, Journal of Porous Materials, 26(5), 1287-1296, 2019. doi: 10.1007/s10934-019-00728-8.

Simotwo, S. K., DelRe, C., and Kalra, V., Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline?Carbon Nanotube Nanofibers, ACS Applied Materials & Interfaces, 8(33), 21261-21269, 2016. doi: 10.1021/acsami.6b03463.

Downloads

Published

2025-12-31

How to Cite

Nur’aini, A., Prasetyo, I., & Ariyanto, T. (2025). Synthesis of Ternary Nanocomposites of MnO2/PANI/Maxsorb and their Performance as an Electrode Material for Supercapacitors. Journal of Mathematical and Fundamental Sciences, 57(2), 96-109. https://doi.org/10.5614/j.math.fund.sci.2025.57.2.2