Expanding Super Edge-Magic Graphs∗

Authors

  • E. T. Baskoro Department of Mathematics, Institut Teknologi Bandung Jl. Ganesa 10 Bandung 40132, Indonesia
  • Y. M. Cholily Department of Mathematics, Universitas Muhammadiyah Malang Jl. Tlogomas 246 Malang 65144, Indonesia

DOI:

https://doi.org/10.5614/itbj.sci.2004.36.2.2

Abstract

For a graph G, with the vertex set V(G) and the edge set E(G) an edge-magic total labeling is a bijection f from V(G)UE(G) to the set of integers {1,2,...., |V(G)|+|E(G)} with the property that f(u) + f(v) +f(uv) = k for each uv elemen E(G) and for a fixed integer k. An edge-magic total labeling f is called super edge-magic total labeling if f(E(G)) = {|V(G)+1, |V(G)+2,....., |V(G)+E(G)|}. In this paper we construct the expanded super edge-magic total graphs from cycles C, generalized Petersen graphs and generalized prisms.

Downloads

How to Cite

Baskoro, E. T., & Cholily, Y. M. (2013). Expanding Super Edge-Magic Graphs∗. Journal of Mathematical and Fundamental Sciences, 36(2), 117-125. https://doi.org/10.5614/itbj.sci.2004.36.2.2

Issue

Section

Articles