The Surface-to-volume Ratio of the Synthesis Reactor Vessel Governing the Low Temperature Crystallization of ZSM-5


  • Ana Hidayati Mukaromah Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Grandprix Thomryes Marth Kadja Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Rino Rakhmata Mukti Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Ignatius Redyte Pratama Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Muhamad Ali Zulfikar Division of Analytical Chemistry, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
  • Buchari Buchari Division of Analytical Chemistry, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia



low OSDA, , low temperature, mesopore, surface-to-volume ratio, ZSM-5


Zeolite ZSM-5 is one of major catalysts in petroleum and fine-chemical industries. The synthesis of zeolite ZSM-5 is usually carried out at high temperature above 100 C using the immense amount of organic structure-directing agents (OSDA). It is interesting to note that fine-tuning the initial gel mixture can be used to enhance the typical slow crystallization rate of ZSM-5. Herein, we report the effect of the surface-to-volume ratio of the reactor vessel to the crystallization of ZSM-5 at low temperature. The surface-to-volume ratio of the reactor vessel could influence the heat-transfer during the synthesis which further governed the crystallization of ZSM-5. It was found that the higher the surface-to-volume of the reactor, the more crystalline of the resulting products. The product with the highest crystallinity exhibited a nearly-spherical morphology composed of smaller ZSM-5 crystallites. This phenomenon allowed the presence of inter-crystallite mesopores which is an advantage for the catalytic reaction using bulky molecules.


Zhao, Y-W., Shen, B-X., Sun, H., Zhan, G-X. & Liu, J-C., Adsorption of Dimethyl Disulfide on ZSM-5 from Methyl Tert-butyl Ether Liquid: A Study on Equilibrium and Kinetics, Fuel Process. Technol., 145, pp. 14-19, 2016.

Xue, Z., Zhang, T., Ma, J., Miao, H., Fan, W., Zhang, Y. & Li, R., Accessibility and Catalysis of Acidic Sites in Hierarchical ZSM-5 Prepared by Silanization, Microporous Mesoporous Mater., 151, pp. 271-276, 2012.

Miyake, K., Hirota, Y., Ono, K., Uchida, Y., Tanaka, S. & Nishiyama, N., Direct and Selective Conversion of Methanol to Para-xylene over Zn Ion Doped ZSM-5/silicalite-1 Core-shell Zeolite Catalyst, J. Catal., 342, pp. 63-66, 2016.

Abda, M.B., Schaf, O. & Zerega, Y., Ion Exchange Effect on Asymmetric Dioxins Adsorption onto FAU-type X-zeolites, Microporous Mesoporous Mater., 217, pp. 178-183, 2015.

Kim, H.S. & Yoon, K.B., Preparation and Characterization of CdS and PbS Quantum Dots in Zeolite Y and their Applications for Nonlinear Optical Materials and Solar Cell, Coord. Chem. Rev., 263-264, pp. 239-256, 2014.

Cai, X., Zhang, Y., Yin, L., Ding, D., Jing, W. & Gu, X., Electrochemical Impedance Spectroscopy for Analyzing Microstructure Evolution of NaA Zeolite Membrane in Acid Water/ethanol Solution, Chem. Eng. Sci., 153, pp. 1-9, 2016.

Viswanadham, N., Kamble, R., Saxena, S.K. & Singh, M., Enhanced Octane Boosting Reactions of Light Naphtha on Mesoporous ZSM-5, Catal. Commun., 9, pp. 1894-1897, 2008.

Cundy, C.S. & Cox, P.A., The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time, Chem. Rev., 103, pp. 663-701, 2003.

Rabenau, A., Hydrothermal Synthesis in Acid Solutions - A Review, Advanced Ceramics III, Somiya, S., ed., Elsevier, pp. 163-179, 1990.

Konno, H., Tago, T., Nakasaka, Y., Ohnaka, R., Nishimura, J. & Masuda, T., Effectiveness of Nano-scale ZSM-5 Zeolite and Its Deactivation Mechanism on Catalytic Cracking of Representative Hydrocarbons of Naphtha, Microporous Mesoporous Mater., 175, pp. 25-33, 2013.

Kadja, G.T.M., Mukti, R.R., Liu, Z., Rilyanti, M., Ismunandar, Marsih, I.N., Ogura, M., Wakihara, T. & Okubo, T., Mesoporogen-free Synthesis of Hierarchically Porous ZSM-5 below 100 C, Microporous Mesoporous Mater., 226, pp. 344-352, 2016.

Bonaccorsi, L. & Proverbio, E., Microwave Assisted Crystallization of Zeolite A from Dense Gels, J. Cryst. Growth, 247, pp. 555-562, 2003.

Liu, Z., Wakihara, T., Nishioka, D., Oshima, K., Takewaki, T. & Okubo, T., One-minute Synthesis of Crystalline Microporous Aluminophosphate (AlPO4-5) by Combining Fast Heating with a Seed-assisted Method, Chem. Commun., 50, pp. 2526-2528, 2014.

Liu, Z., Wakihara, T., Oshima, K., Nishioka, D., Hotta, Y., Elangovan, S.P., Yunaba, Y., Yoshikawa, T., Chaikittisilp, W., Matsuo, T., Takewaki, T. & Okubo, T., Widening Synthesis Bottlenecks: Realization of Ultrafast and Continuous-flow Synthesis of High-silica Zeolite SSZ-13 for NOx Removal, Angew. Chem. Int. Ed., 54, pp. 5683-5687, 2015.

Liu, Z., Wakihara, T., Anand, C., Keoh, S.H., Nishioka, D., Hotta, Y., Matsuo, T., Takewaki, T. & Okubo, T., Ultrafast Synthesis of Silicalite-1 using a Tubular Reactor with a Feature of Rapid Heating, Microporous Mesoporous Mater., 223, pp. 140-144, 2016.

Liu, Z., Wakihara, T., Nomura, N., Matsuo, T., Anand, C., Elangovan, S.P., Yunaba, Y., Yoshikawa, T. & Okubo, T., Ultrafast and Continuous Flow Synthesis of Silicoaluminophosphates, Chem. Mater., 28, pp. 4840-4847, 2016.

American Society for Testing and Material, Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-Ray Diffraction, D5758-01, 2002.

Shukla, D.B. & Pandya, V.P., Estimation of Crystalline Phase in ZSM-5 Zeolites by Infrared Spectroscopy, J. Chem. Tech. Biotechnol., 44, pp. 147-154, 1989.

Landers, J., Gor, G.Y. & Neimark, A.V., Density Functional Theory for Characterization of Porous Materials, Colloids Surf. A, 437, pp. 3-32, 2013.

Petushkov, A., Yoon, S. & Larsen, S.C., Synthesis of Hierarchical Nanocrystalline ZSM-5 with Controlled Particle Size and Mesoporosity, Micropororous Mesoporous Mater., 137, pp. 92-100, 2011.

Yokomori, Y. & Idaka, S., The Structure of TPA-ZSM-5 with Si/Al=23, Microporous Mesoporous Mater, 28, pp. 405-413.

Al-Oweini, R. & El-Rassy, H., Synthesis and Characterization by FTIR Spectroscopy of Silica Aerogels Prepared using Several Si(OR)4 and R""Si(OR")3 precursors, J. Mol. Struct., 919, pp. 140-145, 2009.

Figueiredo, A.L., Araujo, A.S., Linares, M., Peral, ., Garca, R.A., Serrano, D.P. & Fernandes Jr., V.J., Catalytic Cracking of LDPE Over Nanocrystalline HZSM-5 Zeolite Prepared by Seed-assisted Synthesis from an Organic-template-free System, J. Anal. Appl. Pyrol., 117, pp. 132-140, 2016.