Plutonium and Minor Actinides Recycling in Standard BWR using Equilibrium Burnup Model


  • Abdul Waris Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology
  • Rizal Kurniadi
  • Zaki Su'ud



Plutonium (Pu) and minor actinides (MA) recycling in standard BWR with equilibrium burnup model has been studied. We considered the equilibrium burnup model as a simple time independent burnup method, which can manage all possible produced nuclides in any nuclear system. The equilibrium burnup code was bundled with a SRAC cell-calculation code to become a coupled cell-burnup calculation code system. The results show that the uranium enrichment for the criticality of the reactor, the amount of loaded fuel and the required natural uranium supply per year decrease for the Pu recycling and even much lower for the Pu & MA recycling case compared to those of the standard once-through BWR case. The neutron spectra become harder with the increasing number of recycled heavy nuclides in the reactor core. The total fissile rises from 4.77% of the total nuclides number density in the reactor core for the standard once-through BWR case to 6.64% and 6.72% for the Plutonium recycling case and the Pu & MA recycling case, respectively. The two later data may become the main basis why the required uranium enrichment declines and consequently diminishes the annual loaded fuel and the required natural uranium supply. All these facts demonstrate the advantage of plutonium and minor actinides recycling in BWR.


Edlund, M.C., High Conversion Ratio Plutonium Recycle in Pressurized Water Reactors, Ann. Nuclear Energy, 2, 801, 1975.

Leventhal, P. & Dolley, S., Understanding Japan's Nuclear Transports: The Plutonium Context, Proc. Conf. on Carriage of Ultrahazardous Radioactive Cargo by Sea: Implications and Responses, Kuala Lumpur, Malaysia, 1999.

Waris, A. & Sekimoto, H., Basic Study on Characteristics of several equilibrium fuel cycles of PWR, Ann. Nuclear Energy, 28, 153, 2001.

Waris, A. & Sekimoto, H., Characteristics of Several Equilibrium Fuel Cycles of PWR, J. Nucl. Sci. Technol., 38, 517, 2001.


Okumura, K., et al., SRAC (Ver.2002): The Comprehensive Neutronics Calculation Code System, Japan Atomic Energy Research Institute, Tokai-mura, Japan, 2002.

Nakagawa, T., et al., Japanese Evaluated Nuclear Data Library Version 3 Revision-2: JENDL-3.2, J. Nucl. Sci. Technol., 32, 1259, 1996.