Metal-Organic Frameworks Based on Zinc(II) and Benzene-1,3,5-Tricarboxylate Modified Graphite: Fabrication and Application as an Anode Material in Lithium-Ion Batteries


  • Witri Wahyu Lestari Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Jawa Tengah
  • Wulan Cahya Inayah Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Jawa Tengah
  • Fitria Rahmawati Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Jawa Tengah
  • Larasati Larasati Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Jawa Tengah
  • Agus Purwanto Department of Chemical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Jawa Tengah



BTC, MOFs, graphite lithium-ion batteries, zinc(II)


This research was aimed at synthesizing metal-organic frameworks (MOFs) based on zinc(II) and a benzene-1,3,5-tricarboxylate (BTC) linker in combination with graphite as anode material in lithium-ion batteries. The MOFs were prepared using sonochemical and solvothermal methods, which led to different materials: [Zn3(BTC)212H2O] (MOF 1) and [Zn(BTC)H2O3DMF] (MOF 2). The produced materials were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric/differential thermal analysis (TG/DTA), and a battery analyzer. Refinement of the XRD data was performed using the Rietica and Le Bail method. Sharp and intense peaks indicated that the materials had a high degree of crystallinity. The morphology of the materials as analyzed by SEM was cubic, with an average crystal size of 8.377 4.276 m for MOF 1 and a larger size of 16.351 3.683 m for MOF 2. MOF 1 was thermally stable up to 378.7C while MOF 2 remained stable up to 341.8C, as demonstrated by thermogravimetric analysis. The employment of the synthesized materials as anode in a lithium ion battery was proved to yield higher specific capacity and cycle stability compared to those using a graphite anode. The lithium-ion battery with 5wt% MOF 1 exhibited the highest performance with an efficiency of 97.28%, and charge and discharge specific capacities of 123.792 and 120.421 mAh/g, respectively.


Stock, N. & Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, Chemical Reviews, 112(2), pp. 933-969, 2012.

Song, Y., Li, X., Wei, C., Fu, J., Xu, F., Tan, H., Tang, J. & Wang, L., A Green Strategy to Prepare Metal Oxide Superstructure from Metal-Organic Frameworks, Sci. Rep-Uk., 5, pp. 8401-8408, 2015.

Ke, F.-S., Wu, Y.-S. & Deng, H., Metal-Organic Frameworks for Lithium Ion Batteries and Supercapacitors, J. Solid State Chem., 223, pp. 109-121, 2015.

Zhu, C., Chao, D., Sun, J., Bacho, I.M., Fan, Z., Ng, C.F., Xia, X., Huang, H., Zhang, H., Shen, Z.X., Ding, G. & Fan, H.J., Enhanced Lithium Storage Performance of Cuo Nanowires by Coating of Graphene Quantum Dots, Adv. Mater. Interfaces, 2(2), pp. 1-6, 2015.

Xian, S., Peng, J., Zhang, Z., Xia, Q., Wang, H. & Li, Z., Highly Enhanced and Weakened Adsorption Properties of Two Mofs by Water Vapor for Separation of CO2/CH4 and CO2/N2 Binary Mixtures, Chem. Eng. J., 270, pp. 385-392, 2015.

Hasan, Z. & Jhung, S.H., Removal of Hazardous Organics from Water Using Metal-Organic Frameworks (MOFs): Plausible Mechanisms for Selective Adsorptions, J. Hazard. Mater., 283, pp. 329-339, 2015.

Lee, J., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.T. & Hupp, J.T., Metal-Organic Framework Materials as Catalysts, Chem. Soc. Rev., 38, pp. 1450-1459, 2009.

Llabres i Xamena, F.X. & Gascon, J., Metal Organic Frameworks as Heterogenous Catalysts, The Royal Society of Chemistry, Cambridge, 2011.

Horcajada, P., Serre, C., Vallet-Reg, M., Sebban, M., Taulelle, F. & Ferey, G., Metal-Organic Frameworks as Efficient Materials for Drug Delivery, Angew. Chem. Int. Edit., 45(36), pp.5974-5978, 2006.

Chen, B., Wang, L., Zapata, F., Qian, G. & Lobkovsky, E.B., A Luminescent Microporous Metala^Organic Framework for The Recognition and Sensing of Anions, J. Am. Chem. Soc., 130(21), pp. 6718-6719, 2008.

Zhao, D., Wan, X., Song, H., Hao, L., Su, Y. & Lv, Y., Metal-Organic Frameworks (MOFs) Combined with ZnO Quantum Dots as A Fluorescent Sensing Platform for Phosphate, Sensors and Actuators B: Chemical, 197, pp. 50-57, 2014.

Cheng, B., Zare Karizi, F., Hu, M.-L. & Morsali, A., Cation-Exchange Process in an Anionic Metal-Organic Framework: New Precursors for Facile Fabrication of ZnO Nanostructures, Mater. Lett., 137, pp. 88-91, 2014.

Anbia, M., Faryadras, M. & Ghaffarinejad, A., Synthesis and Characterization of Zn3(BTC)2 Nanoporous Sorbent and Its Application for Hydrogen Storage at Ambient Temperature, J. Appl. Chem. Res., 9(3), pp. 33-42, 2015.

Gou, L., Hao, L.-M, Shi, Y.-X., Ma, S.-L., Fan, X.-Y., Xu, L., Li, D.-L. & Wang, K., One-Pot Synthesis of a Metal-Organic Framework as an Anode for Li-Ion Batteries with Improved Capacity and Cycling Stability, J. Solid State Chem., 210(1), pp. 121-124, 2014.

Yang, S.J., Nam, S., Kim, T., Im, J.H., Jung, H., Kang, J.H., Wi, S., Park, B. &. Park C.R, Preparation and Exceptional Lithium Anodic Performance of Porous Carbon-Coated Zno Quantum Dots Derived from A Metal-Organic Framework, J. Am. Chem. Soc., 135(20), pp. 7394-7397, 2013.

Liu, H., Wang, G., Liu, J., Qiao, S.& Ahn, H., Highly Ordered Mesoporous Nio Anode Material for Lithium Ion Batteries with an Excellent Electrochemical Performance, J. Mater. Chem., 21, pp. 3046-3052, 2011.

Yoo, E., Kim, J., Hosono, E., Zhou, H., Kud, T. & Honma, I., Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Lett., 8(8), pp. 2277-2282, 2008.

Saravanan, K., Nagarathinam, M., Balaya, P. & Vittal, J.J., Lithium Storage in A Metal Organic Framework with Diamondoid Topology - A Case Study On Metal Formates, J. Mater. Chem., 20, pp. 8329-8335, 2010.

Banerjee, A., Singh, U., Aravindan, V., Srinivasan, M. & Ogale, S., Synthesis of CuO Nanostructures from Cu-Based Metal Organic Framework (MOF-199) for Application as Anode for Li-Ion Batteries, Nano Energy, 2(6), pp. 1158-1163, 2013.

Yaghi, O.M., Li, H. & Groy, T.L., Construction of Porous Solids From Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid, J. Am. Chem. Soc., 118(38), pp. 9096-9101, 1996

Lestari, W.W., Arvinawati, M., Martien, R. & Kusumaningsih, T., Green and Facile Synthesis of MOF and Nano MOF Containing Zinc(II) and Benzene 1,3,5-Tri Carboxylate and Its Study in Ibuprofen Slow-Release, Mater. Chem. Phys., 204, pp.141-146, 2018.

Huang, X., Chen, Y., Lin, Z., Ren, X., Song, Y., Xu, Z., Dong, X., Li, X., Hu, C. & Wang, B., Zn-BTC Mofs with Active Metal Sites Synthesized Via a Structure-Directing Approach for Highly Efficient Carbon Conversion, Chem. Commun., 50, pp. 2624-2627, 2014.

Zacher, D., Shekhah, O., Wll, C. & Fischer, R.A., Thin Films of Metal-Organic Frameworks, Chem. Soc. Rev., 38, pp. 1418-1429, 2009.

Qiu, L.-G., Li, Z.-Q., Wu, Y., Wang, W., Xu, T. & Jiang, X., Facile Synthesis of Nanocrystals of a Microporous Metal-Organic Framework by an Ultrasonic Method and Selective Sensing of Organoamines, Chem. Commun., 2008, pp. 3642-3644, 2008.

Dey, C., Kundu, T., Biswal, B.P, Mallick, A. & Banerjee, R., Crystalline Metal-Organic Frameworks (MOFs): Synthesis, Structure and Function, Acta Crystallographica Section B Structural Science, Cryst. Eng. Mat. Crystal Engineering and Materials, 70(1), pp. 3-10, 2014.

Le, B., Duroy. A., H, & Fourquet. J.L., Ab Initio Structure Determination of LiSbWO6 by X-Ray Powder Diffraction, Mater. Res. Bull., 23(3), pp. 447-452, 1998.

Lee, I., Choi, S., Lee, H.J. & Oh, M., Hollow Metal-Organic Framework Microparticles Assembled Via a Self-Templated Formation Mechanism, Cryst. Growth Des., 15(11), pp. 5169-5173, 2015.

Stuart, B., Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Australia, 2004.

Hernandez, A., Maya, L., Sanchez-Mora, E. & Sanchez, E.M., Sol-Gel Synthesis, Characterization and Photocatalytic Activity of Mixed Oxide ZnO-Fe2O3, J. Sol-Gel Sci. Techn., 42, pp. 71-78, 2007.

Kumar, S.R., Kumar, S.S & Kulandainathan, M.A., Efficient Electrosynthesis of Highly Active Cu3(BTC)2-MOF and Its Catalytic Application to Chemical Reduction, Micropor. Mesopor. Mat., 168, pp 57-64, 2013.

A?eliA , T.B., Mazaj, M., Guillou, N., KauA iA , V. & Logar, N.Z., New Zinc-Based Metal Organic Framework Material, Proceedings of The 3rd Croatian-Slovenian Symposium On Zeolites, pp. 43-46, 2010.

Dong, Y., Zhao, Y., Duan, H. & Huang, J., Electrochemical Performance and Lithium-Ion Insertion/Extraction Mechanism Studies of the Novel Li2ZrO3 Anode Materials, Electrochim Acta, 161, pp. 219-225, 2015.

Natalia, V., Rahmawati, F., Wulandari, A., Purwanto, A., Graphite/Li2ZrO3 Anode for A LiFePO4 Battery, Chemical Papers 73(3), pp. 757-766, 2019.

Xiao, L., Mei, D., Cao, M., Qu, D. & Deng, B., Effects of Structural Patterns and Degree of Crystallinity on the Performance of Nanostructured Zno as Anode Material for Lithium-Ion Batteries, J. Alloys Comp., 627, pp. 455-462, 2015.

Shiraki, S., Shirasawa, T., Suzuki, T., Kawasoko, H., Shimizu, R. & Hitosugi, T., Atomically Well-Ordered Structure at Solid Electrolyte and Electrode Interface Reduces the Interfacial Resistance, ACS. Appl. Mater. Interfaces., 10(48), pp. 41732-41737, 2018.

Li, X., Cheng, F., Zhang, S. & Chen, J., Shape-Controlled Synthesis and Lithium-Storage Study of Metal-Organic Frameworks Zn4O(1,3,5-Benzenetribenzoate)2, J. Power Sources., 160(1), pp. 542-547, 2006.