Effects of Conditioned Medium of Co-Culture IL-2 Induced NK Cells and Human Wharton’s Jelly Mesenchymal Stem Cells (hWJMSCs) on Apoptotic Gene Expression in a Breast Cancer Cell Line (MCF-7)

Authors

  • Wahyu Widowati Faculty of Medicine, Maranatha Christian University, Jalan Surya Sumantri No. 65, Bandung 40164, Jawa Barat
  • Diana Krisanti Jasaputra Faculty of Medicine, Maranatha Christian University, Jalan Surya Sumantri No. 65, Bandung 40164, Jawa Barat
  • Philips Onggowidjaja Faculty of Medicine, Maranatha Christian University, Jalan Surya Sumantri No. 65, Bandung 40164, Jawa Barat
  • Sutiman Bambang Sumitro Faculty of Science, Brawijaya University, Jalan Veteran, Malang 65145
  • Mochammad Aris Widodo Faculty of Medicine, Brawijaya University, Jalan Veteran, Malang 65145
  • Ervi Afifah Biomolecular Biomedical Research Center, Aretha Medika Utama, Jalan Babakan Jeruk II No. 9, Bandung 40163
  • Dwi Davidson Rihibiha Biomolecular Biomedical Research Center, Aretha Medika Utama, Jalan Babakan Jeruk II No. 9, Bandung 40163
  • Rizal Rizal Biomolecular Biomedical Research Center, Aretha Medika Utama, Jalan Babakan Jeruk II No. 9, Bandung 40163
  • Annisa Amalia Biomolecular Biomedical Research Center, Aretha Medika Utama, Jalan Babakan Jeruk II No. 9, Bandung 40163
  • Hanna Sari Widya Kusuma Biomolecular Biomedical Research Center, Aretha Medika Utama, Jalan Babakan Jeruk II No. 9, Bandung 40163
  • Harry Murti Stem Cell and Cancer Institute, Jalan Pulo Mas No.2, Jakarta 13210
  • Indra Bachtiar Stem Cell and Cancer Institute, Jalan Pulo Mas No.2, Jakarta 13210

DOI:

https://doi.org/10.5614/j.math.fund.sci.2019.51.3.1

Keywords:

breast cancer, conditioned medium, human Wharton’s jelly mesenchymal stem cells, interleukin-2, natural killer cells

Abstract

Breast cancer (BC) is the most prevalent type of cancer among women and one of the major causes of cancer mortality in women. Metastasis in breast cancer (BC) occurs due to immunosurveillance deficiency, including impairment of natural killer (NK) cell maturation. Conditioned medium (CM) from human Wharton's jelly mesenchymal stem cells (hWJMSC-CM) is known to possess anticancer activity. The CM of co-culture of human recombinant IL-2 treated NK cells and hWJMSCs is expected to boost anticancer activity toward BC cells which can be analyzed from the effect of CM towards secretion of effector molecules and expression of BC cell apoptosis-related genes, and cytotoxic granules in human recombinant IL-2 treated NK (IL-2 NK) and hWJMSCs (IL-2 hWJMSCs). TNF-α, IFN-γ, perforin, granzyme were measured by ELISA, while the inhibition of cell proliferation was measured by MTS assay and BC cell apoptosis by flow cytometry and apoptotic gene expression by RTPCR. CM from co-cultured hWJMSCs and IL-2 NK cells inhibited NK and BC cell proliferation, increased expression of Bax and p53 and decreased the number of Bcl-2 in BC cells. In conclusion, CM of co-culture IL-2 treated NK cells and hWJMSCs induce apoptosis in BC cells as indicated by increased Bax and p53 expression and decreased Bcl-2 expression.

References

Tirona, M.T., Sehgal, R. & Ballester, O., Prevention of Breast Cancer (Part I): Epidemiology, Risk Factors, and Risk Assessment Tools, Cancer Invest., 28(7), pp. 743-750, 2010.

Yang, Z.S., Tang, X.J., Guo, X.R., Zou, D.D., Sun, X.Y., Feng, J.B., Luo,J., Dai, L.J. & Warnock, G.L., Cancer Cell-Oriented Migration of Mesenchymal Stem Cells Engineered with an Anticancer Gene (PTEN): An Imaging Demonstration, Onco. Targets Ther., 17(7), pp. 441-446, 2014.

Joyce, J.A. & Pollard, J.W., Microenvironmental Regulation of Metastasis, Nat. Rev. Cancer, 9(4), pp. 239-252, 2009.

Kute, T.E., Savage, L., Stehle, J.R. Jr, Kim-Shapiro, J.W., Blanks, M.J., Wood, J. & Vaughn, J.P., Breast Tumor Cells Isolated from in Vitro Resistance to Trastuzumab Remain Sensitive to Trastuzumab Anti-Tumor Effects in Vivo and to ADCC Killing, Cancer Immunol. Immunother., 58(11), pp. 1887-1896, 2009.

Smyth, M.J., Dunn, G.P. & Schreiber, R.D., Cancer Immunosurveillance and Immunoediting: The Roles of Immunity in Suppressing Tumor Development and Shaping Tumor Immunogenicity, Adv. Immunol., 90(1), pp. 1-50, 2006.

Mamessier, E., Sylvain, A., Thibult, M.L., Houvenaeghel, G., Jacquemier, J., Castellano, R., Gonalves, A., Andre, P., Romagne, F., Thibault, G., Viens, P., Birnbaum, D., Bertucci, F., Moretta, A. & Olive, D., Human Breast Cancer Cells Enhance Self Tolerance by Promoting Evasion from NK Cell Antitumor Immunity, J. Clin. Invest., 121(9), pp. 3609-3622, 2011.

Shankaran, V., Ikeda, H., Bruce, A.T., White, J.M., Swanson, P.E., Old, L.J. & Schreiber R.D., IFN-Gamma and Lymphocytes Prevent Primary Tumor Development and Shape Tumor Immunogenicity, Nature, 410(6832), pp. 1107-1111, 2001.

Taniguchi, K., Karre, K. & Klein, G. Lung Colonization and Metastasis by Disseminated B16 Melanoma Cells: H-2 Associated Control at The Level of the Host and The Tumor Cell, Int. J. Cancer, 36(4), pp. 503-510, 1985.

Caras, I., Grigorescu, A., Stavaru, C., Radu, D.L., Mogos, I., Szegeli, G. & Salageanu, A., Evidence For Immune Defects in Breast and Lung Cancer Patients, Cancer Immunol. Immunother., 53(12), pp.1146-52, 2004.

Levy, E.M., Roberti, M.P. & Mordoh, J., Natural Killer Cells in Human Cancer: From Biological Functions to Clinical Applications, J. Biomed. Biotechnolog., 2011, pp. 1-11, 2011.

Hwang, Y-J., Kim, J., Park, D.S. & Hwang, D.K., A Study on the Immunomodulation Effect of Isodon Japonicus Extract Via Splenocyte Function and NK Anti-Tumor Activity, Int. J. Mol. Sci., 13(4), pp. 4880-4888, 2012.

Esendagli, G., Bruderek, K., Goldmann, T., Busche, A., Branscheid, D., Vollmer, E. & Brandau, S., Malignant and Non-Malignant Lung Tissue Areas Are Differentially Populated by Natural Killer Cells and Regulatory T Cells in Non-Small Cell Lung Cancer, Lung Cancer, 59(1), pp. 32-40, 2008.

Albertsson, P.A., Basse, P.H., Hokland, M., Goldfarb, R.H., Nagelkerke, J.F., Nannmark, U. & Kuppen, P.J., NK Cells and The Tumour Microenvironment: Implications for NK-Cell Function and Anti-Tumour Activity, Trends Immunolog., 24(11), pp. 603-609, 2003.

James, A.M., Cohen, A.D. & Campbell, K.S., Combination Immune Therapies to Enhance Anti-Tumor Responses by NK Cells, Frontiers Immunolog., 4(481), pp.1-12, 2013.

Carson, W.E., Fehniger, T.A., Haldar, S., Eckhert, K., Lindemann, M.J., Lai, C.F., Croce, C.M., Baumann, H., Caligiuri, M.A., A Potential Role for Interleukin-15 in the Regulation of Human Natural Killer Cell Survival, J. Clin. Invest., 99(5), pp. 937-943, 1997.

Cheng, M., Chen, Y., Xiao, W., Sun, R. & Tian, Z., NK Cell-Based Immunotherapy for Malignant Disease, Cellular Mol. Immunol., 10(3), pp. 230-252, 2013.

Sutlu, T. & Alici, E., Natural Killer Cell-Based Immunotherapy in Cancer: Current Insights and Future Prospects, J. Intern. Med., 266(2), pp. 154-181, 2009.

Kelly, J.M., Darcy, P.K., Markby, J.L., Godfrey, D.I., Takeda, K., Yagita, H. & Smyth, M.J., Induction of Tumor-Specific T Cell Memory by NK Cell-Mediated Tumor Rejection, Nat. Immunol., 3(1), pp. 83-90, 2002.

Maestroni, G.J., Hertens, E., & Galli, P., Factors from Nonmacrophage Bone Marrow Stromal Cells Inhibit Lewis Lung Carcinoma and B16 Melanoma Growth in Mice, Cell Mol. Life Sci., 55(4), pp. 663-667, 1999.

Nakamura, K., Ito, Y., Kawano, Y., Kurozumi, K., Kobune, M., Tsuda, H., Bizen, A., Honmou, O., Niitsu, Y. & Hamada, H., Antitumor Effect of Genetically Engineered Mesenchymal Stem Cells in a Rat Glioma Model, Gene Ther., 11(14), pp. 1155-1164, 2004.

Qiao, C., Xu, W., Zhu, W., Hu, J., Qian, H., Yin, Q., Jian, R., Yan, Y., Mao, F., Yang, H., Wang, X. & Chen, Y., Human Mesenchymal Stem Cells Isolated from the Umbilical Cord, Cell Biol. Int., 32(1), pp. 8-15, 2008.

Qiao, L., Xu, Z., Zhao, T., Zhao, Z., Shi, M., Zhao, R.C., Ye, L. & Zhang, X., Suppression of Tumorigenesis by Human Mesenchymal Stem Cells in a Hepatoma Model, Cell. Res., 18, pp. 500-507, 2008.

Widowati, W., Wijaya, L., Murti, H., Widyastuti, H., Agustina, D., Laksmitawati, D.R., Fauziah, N., Sumitro, S.B., Widodo, M.A. & Bachtiar, I., Conditioned Medium from Normoxia (WJMSC-NorCM) and Hypoxia-Treated WJMSC (WJMSC-HypoCM) in Inhibiting Cancer Cell Proliferation, Biomarkers Gen. Med., 7(1), pp. 8-17, 2015.

Antonius, A.A., Widowati, W., Wijaya, L., Agustina, D., Puradisastra, S., Sumitro, S.B., Widodo, M.A. & Bachtiar, I., Human Platelet Lysate Enhances the Proliferation of Wharton's Jelly-Derived Mesenchymal Stem Cells, Biomarkers Gen. Med, 7(3), pp.87-97, 2015.

Widowati, W., Widyastuti, H., Murti, H., Laksmitawati, D.R., Maesaroh, M., Sumitro, S.B., Widodo, M.A. & Bachtiar, A., Interleukins and VEGF Secretome of Human Wharton's Jelly Mesenchymal Stem Cells-Conditioned Medium (HWJMSC-CM) in Different Passages and Oxygen Tensions, Biosci. Res., 14(4) pp.776-787, 2017.

Widowati, W., Wijaya, L., Wargasetia, T.L., Bachtiar, I., Yelliantty, Y. & Laksmitawati, D.R., Antioxidant, Anticancer, and Apoptosis-Inducing Effects of Piper Extracts in HeLa Cells, J. Exp. Integr. Med., 3(3), pp. 225-230, 2013.

Parihar, R., Dierksheide, J & Hu, Y., IL-12 Enhances The Natural Killer Cell Cytokine Response to Ab-Coated Tumor Cells, J. Clin. Invest., 110(7), pp. 983-92, 2002.

Lu, Y.R., Yuan, Y., Wang, X.J., Wei, L.L., Chen, Y.N., Cong, C., Li, S.F., Long, D., Tan, W.D., Mao, Y.Q., Zhang, J., Li, Y.P. & Cheng, J.Q., The Growth Inhibitory Effect of Mesenchymal Stem Cells on Tumor Cells in Vitro and in Vivo, Cancer Biol. Ther., 7(2), pp. 245-251, 2008.

Jewett, A. & Tseng, H.C., Tumor Induced Inactivation of Natural Killer Cell Cytotoxic Function; Implication in Growth, Expansion and Differentiation of Cancer Stem Cells, J. Cancer, 2(2011), pp. 443-457, 2011.

Widowati, W., Murti, H., Jasaputra, D.K., Sumitro, S.B., Widodo, M.A., Fauziah, N., Maesaroh, M. & Bachtiar, I., Selective Cytotoxic Potential of IFN- and TNF- on Breast Cancer Cell Lines (T47D and MCF-7), Asian J. Cell. Biol., 11(1), pp. 1-12, 2016.

Hidayat, M., Prahastuti, S., Maesaroh, M., Balqis, B. & Widowati, W., Modulation of the Adipogenesis-Related Gene Expression by Ethanol Extract of Detam 1 Soybean (Glycine max) and Jati Belanda (Guazuma ulmifolia) Leaves in 3T3-L1 Cells, Bangladesh J. Pharmacolog., 11(3), pp. 697-702, 2016.

Cooper, M.A., Fehniger, T.A. & Caligiuri, M.A., The Biology of Human Natural Killer-Cell Subsets, Trends Immunol, 22(11), pp. 633-640, 2001.

Aggarwal, S. & Pittenger, M.F, Human Mesenchymal Stem Cells Modulate Allogeneic Immune Cell Responses, Blood, 105(4), pp. 1815-1822, 2005.

Sotiropoulou, P.A., Perez, S.A., Gritzapis, A.D., Baxevanis, C.N. & Papamichail, M., Interactions Between Human Mesenchymal Stem Cells and Natural Killer Cells, Stem Cells, 24(1), pp. 74-85, 2006.

Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., Santarlasci, V., Mazzinghi, B., Pizzolo, G., Vinante, F., Romagnani, P., Maggi, E., Romagnani, S. & Annunziato, F., Role for Interferon-?3/4 in the Immunomodulatory Activity of Human Bone Marrow Mesenchymal Stem Cells, Stem Cells, 24(2), pp. 386-398, 2006.

Albersen, M., Fandel, T., Lin, G., Wang, G., Banie, L., Lin, C.S. & Lue, T.F., Injections of Adipose Tissue-Derived Stem Cells and Stem Cell Lysate Improve Recovery of Erectile Function in A Rat Model of Cavernous Nerve Injury. J. Sex. Med., 7(10), pp.1-14, 2010.

Feng, D.Q., Zhou, Y., Ling, B., Gao, T., Shi, Y.Y., Wei, H.M. & Tian, Z.G., Effects of The Conditioned Medium of Mesenchymal Stem Cells on Mouse Oocyte Activation and Development, Braz. J. Med. Biol. Res., 42(6), pp. 506-514, 2009.

Mintz, P.J., Huang, K-W., Reebye, V., Nteliopoulos, G., Lai, H.S., Strom, P., Kasahara, N., Jensen, S., Pai, M., Gordon, M.Y., Marley, S.B., Behan, R., Spalding, D.R., Haoudi, A., Emara, M.M., Nicholls, J., Rossi, J.J. & Habib, N.A., Exploiting Human CD34+ Stem Cell-Conditioned Medium for Tissue Repair, Mol. Ther., 22(1), pp. 149-159, 2013.

Yang, C., Lei, D., Ouyang, W., Ren, J., Li, H., Hu, J. & Huang, S., Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines in Vitro, Bio. Med. Res. Int., 2104, pp. 1-13, 2014.

Gauthaman, K., Yee, F.C., Cheyyatraivendran, S., Biswas, A., Choolani, M. & Bongso, A., Human Umbilical Cord Wharton's Jelly Stem Cell (Hwjsc) Extracts Inhibit Cancer Cell Growth In Vitro, J. Cell. Biochem., 113(6), pp. 2027-2039, 2012.

Walter, M.N., Wright, K.T., Fuller, H.R., MacNeil, S. & Johnson, W.E., Mesenchymal Stem Cell-Conditioned Medium Accelerates Skin Wound Healing: An In Vitro Study of Fibroblast and Keratinocyte Scratch Assays, Exp. Cell. Res, 316(7), pp. 1271-1281, 2010.

Shah, K., Mesenchymal Stem Cells Engineered for Cancer Therapy, Adv. Drug Deliv. Rev, 64(8), pp. 739-748, 2012.

Glenn, J.D. & Whartenby, K.A., Mesenchymal Stem Cells: Emerging Mechanisms of Immunomodulation and Therapy, World J. Stem. Cells, 6(5), pp. 526-539, 2014.

Spaggiari, G.M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M.C. & Moretta, L., Mesenchymal Stem Cells Inhibit Natural Killer-Cell Proliferation, Cytotoxicity, and Cytokine Production: Role of Indoleamine 2,3-Dioxygenase and Prostaglandin E2, Blood, 111(3), pp. 1327-1333, 2008.

Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., Borg, C., Saas, P., Tiberghien, P., Rouas-Freiss, N., Carosella, E.D. & Deschaseaux, F., Human Leukocyte Antigen-G5 Secretion by Human Mesenchymal Stem Cells is Required to Suppress T Lymphocyte and Natural Killer Function and to Induce CD4+CD25highFOXP3+ Regulatory T Cells, Stem Cells, 26(1), pp. 212-222, 2008.

Casado, J.G., Tarazona, R. & Sanchez-Margallo, F.M., NK and MSCs Crosstalk: The Sense of Immunomodulation and Their Sensitivity, Stem. Cell. Rev, 9(2), pp. 184-1899, 2013.

DellaRosa, O., Sanchez-Correa, B., Morgado, S., Ramrez, C., del Ro, B., Menta, R., Lombardo, E., Tarazona, R. & Casado, J.G., Human Adipose-Derived Stem Cells Impair Natural Killer Cell Function and Exhibit Low Susceptibility to Natural Killer-Mediated Lysis, Stem. Cells. Dev, 21(8), pp. 1333-1343, 2012.

Yamashita, M., Kitano, S., Aikawa, H., Kuchiba, A., Hayashi, M., Yamamoto, N., Tamura, K. & Hamada, A., A Novel Method for Evaluating Antibody-Dependent Cell-Mediated Cytotoxicity by Flowcytometry Using Cryopreserved Human Peripheral Blood Mononuclear Cells, Sci. Reports, 6(Article Num. 19772), pp. 1-10, 2016.

Siebert, N., Seidel, D., Eger, C., J1/4ttner, M. & Lode, H.N., Functional Bioassays for Immune Monitoring of High-Risk Neuroblastoma Patients Treated with Ch14.18/CHO Anti-GD2 Antibody, PLoS One, 9(9), pp. 1-15, 2014.

James, A.M., Cohen, A.D. & Campbell, K.S., Combination Immune Therapies to Enhance Anti-Tumor Responses by NK Cells, Frontiers Immunolog., 4(481), pp. 1-12, 2013.

Kovach, T.K., Dighe, A.S., Lobo, P.I. & Qui, J., Interactions between MSCs and Immune Cells: Implications for Bone Healing, J. Immunol. Res, 2015 (Article ID 752510), pp. 1-17, 2015.

Domaica, C.I., Fuertes, M.B. & Uriarte, I., Human Natural Killer Cell Maturation Defect Supports in Vivo CD56 Bright to CD56 Dim Lineage Development, Plos One, 7(12), pp. 1-12, 2012.

Uccelli, A., Moretta, L. & Pistoia, V., Mesenchymal Stem Cells in Health and Disease, Nat. Rev. Immunol., 8(9), pp. 726-736, 2008.

Zwirner, N.W. & Domaica, C.I., Cytokine Regulation of Natural Killer Cell Effector Functions, Biofactors, 36(4), pp. 274-228, 2010.

Brodbeck, T., Nehmann, N., Bethge, A., Wedemann, G. & Schumacher, U., Perforin-Dependent Direct Cytotoxicity in Natural Killer Cells Induces Considerable Knockdown of Spontaneous Lung Metastases and Computer Modelling-Proven Tumor Cell Dormancy in a HT29 Human Colon Cancer Xenograft Mouse Model, Molecular Cancer, 13(244), pp.1-11, 2014.

Wang, L-F., Wang, F., Li, J-T, Wen, W.H., Zhao, J., Jia, L.T., Meng, Y.L., Cao, Y.X., Yao, L.B., Chen, S.Y., Xu, Y.M. & Yang, A.G., Ectopically Expressed Perforin-1 is Proapoptotic in Tumor Cell Lines by Increasing Caspase-3 Activity and the Nuclear Translocation of Cytochrome C, PLoS ONE, 7(7), pp. 1-11, 2012.

Rousalova, I., & Krepela, E., Granzyme B-Induced Apoptosis in Cancer Cells and its Regulation (Review), Int. J. Oncolog., 37(6), pp. 1361-1378, 2010.

Catalan, E., Jaime-Sanchez, P., Aguilo, N., Simon, M.M., Froelich, C.J. & Pardo, J., Mouse Cytotoxic T Cell-Derived Granzyme B Activates the Mitochondrial Cell Death Pathway in a Bim-Dependent Fashion, J. Biol. Chem., 290(11), pp. 6868-6877, 2015.

Meslin, F., Thiery, J., Richon, C., Jalil, A. & Chouaib S., Granzyme B-induced Cell Death Involves Induction of p53 Tumor Suppressor Gene and its Activation in Tumor Target Cells, J. Biolog. Chem., 282(45), 32991-32999, 2007.

Chau, B. N., Borges, H. L., Chen, T. T., Masselli, A., Hunton, I.C. & Wang, J.Y., Signal-dependent Protection from Apoptosis in Mice Expressing Caspase-Resistant Rb, Nat. Cell. Biol., 4(10), pp. 757-765, 2002.

Chau, B.N., Chen, T-T., Wan, Y.Y., DeGregori, J. & Wang, J.Y., Tumor Necrosis Factor Alpha-Induced Apoptosis Requires p73 and c-ABL Activation Downstream of RB Degradation, Mol. Cell. Biol., 24(10), pp. 4438-4447, 2004.

Yeung, M.C. & Lau, A.S., Tumor Suppressor p53 as a Component of the Tumor Necrosis Factor-induced, Protein Kinase PKR-mediated Apoptotic Pathway in Human Promonocytic U937 Cells, J. Biol. Chem., 273(39), pp. 25198-25202, 1998.

Ossina, N.K., Cannas, A., Powers, V.C., Fitzpatrick, P.A., Knight, J.D., Gilbert, J.R., Shekhtman, E.M., Tomei, L.D., Umansky, S.R. & Kiefer, M.C., Interferon-g Modulates a p53-independent Apoptotic Pathway and Apoptosis-related Gene Expression, J. Biologic Chem., 272(26), 16351-16357, 1997.

Jean, M.D.S., Brignole, F., Feldmann, G, Goguel, A. & Baudouin, C., Interferon-Gamma Induces Apoptosis and Expression of Inflammation-Related Proteins in Chang Conjunctival Cells, Invest. Ophthalmol. Vis. Sci., 40(10), pp. 2199-212, 1999.

Zhang, H.M., Yuan, J., Cheung, P., Chau, D., Wong, B.W., McManus, B.M. & Yang, D., Gamma Interferon-Inducible Protein 10 Induces HeLa Cell Apoptosis through a p53-Dependent Pathway Initiated by Suppression of Human Papillomavirus Type 18 E6 and E7 Expression, Mol. Cell. Biol., 25(14), pp. 6247-6258, 2005.

Cho, S.J. & Pyo, S., Interferon- Enhances the Apoptosis of Macrophages Under Trophic Stress Through Activation of p53 and the JAK1 Pathway, Archives Pharmacal. Res., 33(2), pp. 285-291, 2010.

Downloads

Published

2019-12-31

Issue

Section

Articles