Oscillation of Second Order Nonlinear Differential Equations

Authors

  • S.M. Nababan Fakultas Matematika ITB

Abstract

In this paper we consider the following second order nonlinear differential equations:

u" + f(t,u) = 0, t0

Oscillation criteria for the above equation will be established by modification of the method that has been used previously. The results obtained will contain and improve the previous results. Some conditions imposed in the theorem will be less weaker than used before.

Tulisan ini membahas persamaan diferensial nonlinear orde dua yang berbentuk:

u " + f ( t , u ) = 0 , t>0

Kriteria oskilasi untuk persamaan di atas dikaji dengan memodifikasi metode yang pernah dilakukan untuk menentukan kriteria oskilasi untuk persamaan diferensial di atas. Hasil yang diperoleh memuat dan mengembangkan kriteria oskilasi sebelumnya. Beberapa asumsi dalam teorema lebih lemah dibandingkan dengan yang digunakan sebelumnya.

References

COLES, W.J.A Nonlinear Oscillation Theorem, International Conference on Differential Equations; (H.A. Antosiewicz, Ed), pp193-202, Academic Press, New York, 1992.

KAMENEV, I.V. Some Specially Nonlinear Oscillation Theorems, Mat Zametki, pp129-134, 1971.

KWONG, M.K. and WONG, J.S.W. An Oscillation Criteria for Second Order Sublinear Dffirential Equations, SIAM J. Math Anal, Vol. 14, No 3, pp. 474-476, 1983.

NABABAN, S.M. Oscillation Criteria for Second Order Nonlinear Inequalities, Sains Malaysiana, 11, (l), 39-43,1982.

NABABAN S.M. Oscillation Criteria for Second Order Nonlinear Differential Equations to Appear, in the Proceeding International Conference on Differential Equation (ICDE' 96), Kluwer Academic Publisher, Holland, 1997.

PHILOS, CH.G. Oscillation of Sublinear Differential Equations of Second Order, Nonlinear Analysis, Theory, Methods & Application, vol. 7, No 10, pp 1071-1080, 1983.

WONG, J.S.W. Oscillation Theorems for Second Order Nonlinear Differential Equations, Bulletin of Institute of Math. Acad Sinica, Vol 3, No 2, pp283-309, 1975.

WONG. J.S.W. A Sublinear Oscillation Theorem. Journal of Math. Anal & Appl, 139, 408-412, 1989.

WONG. J.S.W. An Oscillation Criterion for Second Order Subliniear Differential Equation, Journal of Math. Anal & Appl, 171, 346-351, 1992.

Downloads

How to Cite

Nababan, S. (2019). Oscillation of Second Order Nonlinear Differential Equations. Journal of Mathematical and Fundamental Sciences, 29(1/2), 1-9. Retrieved from https://journals.itb.ac.id/index.php/jmfs/article/view/9449

Issue

Section

Articles