The Multiplication Problem for Spheres
Abstract
Abstract. The multiplication problem for spheres is to determine which spheres in Euclidean space Sn-1-" Enpermit a continuous multiplication. This paper presents the topological K-theory proof that it is only possible when n = 1, 2, 4, and 8. These cases correspond to S0-" E1, S1-" E2, S3-" E4, and S7-" E8where the multiplications are given respectively by the real numbers, complex numbers, quaternions, and Cayley numbers.
Ringkasan. Masalah pendarapan bagi bola adalah masalah untuk menentukan bola-bola dalam Ruang Euclid Sn-1-" En membenarkan suatu pendarapan yang kontinu. Tulisan ini menyampaikan bukti teori K topologi bahwa hanya dapat terjadi abila n = 1, 2, 4, dan 8. Kasus ini bersesuaian dengan S0-" E1, S1-" E2, S3-" E4, dan S7-" E8 di mana pendarapan-pendarapan diberikan oleh bilangan-bilangan riil, kompleks, kuaternion, dan bilangan Cayley.
References
Adams, J.F., "On the Non-existance of Elements of Hopf Invariant One", Ann. of Math. 72 : 20-104, 1960.
Adem, J., "The Iteration of the Steenrod Squares in Algebraic Topology" , Proc. Nat. Acad. Sci. U.S.A. 38 : 720-26, 1952.
Atiyah, M.F., K-theory, Harvard Univ., Cambridge, 1964.
Husemoller, D., Fiber Bundles, McGraw-Hill, New York, 1966.
Steenrod, N., Cohomology Operations, Princeton Univ. Press, Princeton, 1962.
Toda, H., "Generalized whitehead Products and Homotopy Groups of Spheres", Jour. Inst. Polytech. Osaka City Univ. 3 : 43-82, 1952.
Whitehead, G.W., "A Generalization of the Hopf Invatiant", Ann. of Math. 51 : 192-237, 1950.