ANALISIS DISPERSI POLUTAN DARI MULTIPLE SOURCES OPERASIONAL PLTU BATUBARA X SEBAGAI MEDIA PERHITUNGAN VALUASI EKONOMI

https://doi.org/10.5614/j.tl.2017.23.2.6

Authors

  • Mardhika Lunaria Jenned Program Studi Teknik Lingkungan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung
  • Kania Dewi Program Studi Teknik Lingkungan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung

Abstract

Abstrak: Dalam kegiatan operasional nya PLTU menghasilkan polutan yang berasal dari gas buang hasil pembakaran kegiatan industri, pembakaran bahan bakar dari transportasi operasional dan tumpukan batu bara yang tertiup oleh angin. Hasil model menunjukkan keadaan udara ambien di sekitar lokasi penelitian terjadi beberapa kejadian dimana konsentrasi polutan menjadi sangat besar melebihi baku mutu, CO pada periode tahunan dengan waktu running 1 jam mencapai 91.489,31 ug/m3, 24 jam mencapai 7.380,355 ug/m3 dan annual sebesar 2.580,604 ug/m3, konsentrasi NOx untuk waktu simulasi 1 jam, 24 jam dan annualsebesar 67.276,63 ug/m3, 4.373,796 ug/m3 dan 183,1157 ug/m3. Konsentrasi SO2pada lokasi penelitian mencapai 32.840,63 ug/m3 untuk 1 jam, 2.089,144 ug/m3 untuk 24 jam dan 51.887 untuk waktu simulasi annual, sedangkan konsentrasi TSP yang terjadi untuk 24 jam sebesar 937,7436 ug/m3 dan 43.4765 ug/m3 untuk waktu simulasi annual. Jika dibandingkan dengan jumlah kejadian dalam setiap waktu simulasi, kondisi konsentrasi yang melebihi baku mutu untuk simulasi 1 jam dan 24 jam tidak ada yang mencapai 0.1 % dari keseluruhan data, bisa di anggap kejadian konsentrasi yang sangat ekstrim terjadi sangat jarang pada setiap waktu simulasi. Beban emisi per tahun yang dihasilkan oleh PLTU menyebabkan biaya tanggung jawab sebesar Rp. 5.766.491.487,23 sebagai biaya pengganti udara yang tercemar dan Rp. 12.060.026.700 untuk pergantian nilai ekonomi change of productivity, sedangkan untuk nilai ekonomi prevention cost untuk menanggulangi penurunan produktivitas tanaman sebesar Rp. 592.703.800 sehingga nilai TEV yang terhasilkan sebesar Rp. 18.419.221.987,23 / Tahun.

 

Kata kunci: AERMOD, Gaussian, Pemodelan Dispersi, Valuasi Ekonomi

 

Abstract : In its operational activities coal-fired power station produces pollutants derived from the exhaust gases the results of combustion industrial activity , the combustion of fuel of transport operating and a pile of stones coals that blew by the wind. The results of the model showed the state of the air ambient around the location research happened instances where concentration pollutants be huge exceeds of quality standard, CO in the period annual with time running 1 hour reached 91.489,31 ug/m3, 24 hours reached 7.380,355 ug/m3 and annual of 2.580,604 ug/m3, concentration of NOx to the simulation time 1 hour, 24 hours and annual of 67.276,63 ug/m3, 4.373,796 ug/m3 and 183,1157 ug/m3. Concentration SO2 on the site of research reached 32.840,63 ug/m3 for 1 hou, 2.089,144 ug/m3 for 24 hours and 51.887 ug/m3 to the simulation time annual, while concentration the TSP that happens to 24 hour is 937,7436 ug/m3 and 43.4765 ug/m3 for the simulation time annual. Compared to the number of occurrences in any the simulation time , the condition of concentration exceeds of quality standard for the simulations 1 hour and 24 hours of no at 0.1% of the overall data, can be consider scene concentration very extreme happen very rarely in every the simulation time. Burden emission per year produced by coal-fired power to cause the cost responsibility Rp. 5.766.491.487,23 as a charge a substitute for air tainted and Rp. 12.060.026.700 to the economic value change of productivity, while for economic value prevention cost to address the decline in productivity plants Rp. 592.703.800 so that the TEV is Rp. 18.419.221.987,23 / year

 

Key words: AERMOD, Dispersion model, Economic valuation, Gaussian

References

Ashrafi Khosro, Orkomi Ali Ahmadi, Motlagh Majid Shafipour. 2017. Direct Effect Turbulence on Plume Rise in a Neutral Atmosphere. Journal Atmospheric Pollution Research Volume xx Hal 1 - 12.

Avnery Shiri, Mauzerall Denise L, Liu Junfeng, Horowitz Larry W. 2011. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 Pollution. Journal Atmospheric Environment Vol 45 Hal 2297 - 2309. USA.

Currie Janet, Neidell Matthew, Schmieder Johannes. 2009. Air Pollution and Infant Health: Lessons From New Jersey. Journal Of Health Economics 28 Page 688-703. United States

Dewi Fitria, 2013. Modelling On Distribution Pattern Of Main Pollutans (SO2, NOx, and Dust) Of PLTU Cilacap Smoke Stack Using Gaussian Plume. Tesis. Universitas Gadjah Mada. Yogjakarta.

Ding F. 2012. Analysis of Upper Air Environmental Impact of Pollutants Discharged by Power Plant. Procedia Environmental Sciences Volume 13. Pages 1145 - 1154. China.

Environmental Protection Agency. 2004. AERMOD: Description Of Model Formultaion. United States.

Gibson Mark D, Kundu Soumita, Satish Mysore. 2013. Dispersion Model Evaluation of PM2.5, NOx and SO2 from Point and Major Line Sources in Nova Scotia, Canada using AERMOD Gaussian Plume Air Dispersion Model. Journal Atmospheric Pollution Research Vol 4 Pages 157 - 167

Jeanjean APR, Monks PS, Leigh RJ. 2016. Modelling the Effectiveness of Urban Trees and Grass on PM2.5 Reduction via Dispersion and Deposition at a City Scale. Journal Atmospheric Environment Vol 147 Hal 1 - 10. Inggris.

Mokhtar Mutahharah, Hassim Mimi, Taib Rozainee. 2014. Health Risk Assessment of Emissions From a Coal-Fired Power Plant Using AERMOD Model. Journal Process Safety and Environmental Protection 92 Page 476-485. Malaysia.

Mubarok Ahmad, Ciptomulyono Udisubakti. 2012. Valuasi Ekonomi Dampak Lingkungan Tambang Marmer di Kabupaten Tulungagung dengan Pendekatan Willingness to pay dan Fuzzy MCDM. Jurnal Teknik ITS Vol. 1 No.1. Institut Teknologi Sepuluh November. Surabaya.

Nwachukwu A. N., Chukwuocha E. O., Igbudu O. 2012. A Survey On The Effects Of Air Pollution On Diseases Of The People Of River State Nigeria. Afriacan Journal Of Environmental Science and Technologu Vol 6 Page 371-379. Nigeria.

Putut Endrayana, Widodo Basuki. 2011. Simulasi Model Dispersi Polutan Karbon Monoksida di Pintu Masuk Tol. Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA. Yogyakarta.

Robertson G Philip, Bruulsema Tom W, Gehl Ron J, Kanter David, Mauzerall Denise L, Rotz Alan, Williams Candiss O. 2012. Nitrogen-Climate Intercations in US Agriculture. Journal Biogeochemistry October. America.

Seangkiatiyuth Kanyanee., Surapipith Vanisa., Tantrakarnapa Kraichat., Lothongkum Anchaleeporn. 2011. Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex. Journal Of Environmental Sciences. Thailand.

Tartakovsky Dmitry, Stern Elim Borday David M. 2016. Comparison of Dry Deposition Estimates of AERMOD and CALPUFF from area sources in flat terrain. Journal Atmospheric Environment 142 Hal 430 - 432. Elsevier

Published

2017-10-03

How to Cite

Jenned, M. L., & Dewi, K. (2017). ANALISIS DISPERSI POLUTAN DARI MULTIPLE SOURCES OPERASIONAL PLTU BATUBARA X SEBAGAI MEDIA PERHITUNGAN VALUASI EKONOMI. Jurnal Teknik Lingkungan, 23(2), 53-63. https://doi.org/10.5614/j.tl.2017.23.2.6

Issue

Section

Articles