Kajian Penggunaan Baja Tahan Karat 316L sebagai Implan Sendi Panggul
Abstrak
Implan merupakan salah satu inovasi terpenting dalam peralatan medis untuk menolong pasien yang mengalami disabilitas. Salah satu implan yang banyak dikembangkan saat ini adalah implan hip-joint. Implan hip-joint harus memiliki beberapa karakteristik seperti tahan korosi, memiliki biokompatibilitas yang baik dengan tubuh dan memiliki ketahanan aus yang tinggi. Karakteristik tersebut dibutuhkan untuk menjamin keamanan pasien selama operasi atau penggunaan pasca operasi. 316L SS bebas nikel merupakan salah satu material yang umum digunakan sebagai implan. 316L SS memiliki harga yang lebih murah dibandingkan dengan titanium dan cobalt. Walaupun demikian, 316 L SS memiliki ketahanan aus yang rendah dan perlu dilapisi dengan tujuan untuk meningkatkan ketahanan ausnya. Beberapa penelitian melaporkan FeCrMoCB merupakan material pelapis yang memiliki ketahanan aus yang baik. Studi ini mendiskusikan karakteristik material 316 L SS sebagai impan, pengujian, proses manufaktur, dan aspek sustainabilitas dari proses manufakturnya.
Referensi
Holloway, A., Archaeologists discover 2,300-year-old dental implant in Iron Age burial chamber, Ancient Origins, (Online), May 2014 (https://www.ancient-origins.net/news-historyarchaeology/archaeologists-discover-2300-year-old-dental-implantiron-age-burial, diakses 9 November 2020).
Dental Tribune International, Archaeologists Disciver Early Example of Dental Implant, Dental Tribune, (Online), June 2014 (https://eu.dentaltribune.com/news/archaeologists-discover-early-example-of-dentalimplant/, diakses 9 November 2020).
Knight, S. R., Aujla, R. & Biswas, S. P., Total Hip Arthroplasty - over 100 years of operative history, US National Library of Medicine, (Online), September 2011 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257425/, diakses 9 November 2020).
Hip Joint : Anatomy, Movement & Muscle involvment, how to relief, (Online), (https://www.howtorelief.com/hip-joint-anatomy/, diakses 9 November 2020).
JPNN, 27 Persen Lansia di Indonesia Terkena Osteoartritis, JPNN, (Online), August 2017 (https://www.jpnn.com/news/27-persen-lansiadi-indonesia-terkena-osteoartritis, diakses 20 November 2020).
Aherwar, A., Current and future biocompabtibility aspects of biomaterials for hip prosthesis, AIMS Bioengineering, 2015.
BPPT, Klaster Teknologi Material - Implan Tulang Stainless Steel 316L, Pusyantek BPPT, (Online), 2018 (http://pusyantek.bppt.go.id/id/pages/klaster-teknologi/material/implantulang-stainless-steel-316-l, diakses 20 November 2020).
Asri, R. I., Harun, W. S., Samykano, S., Lah, N. A., Ghani, S. A., Tarlochan, F. & Raza, M. R., Corrosion and surface modification on biocompatible metals: A review, Materials Science & Engineering C, 77, pp. 1261-1274, 2017.
Chen, Q. & Thouas, G. A., Metallic implant biomaterials, Materials Science & Engineering R, 87, pp. 1-57, 2015.
Ibrahim, H., Esfahani, S. N., Poorganji, B., Dean, D. & Elahinia, M., Resorbable bone fixation alloys, forming, and post-fabrication treatments, Materials Science and Engineering: C, 1(70), pp. 870-888, 2017.
Hua, N., Hong, X., Liao, Z., Wang, Q., Zhang, L., Guo, Q., Ye, X., Bretchl, J. & Liaw, P. K., A biocompatible Pd-based BMG with excellent corrosive-wear resistance for implant applications, Intermetallics, 124, 2020.
Andri, Wahyudi., & Abd, Wahid., Ilmu Keperawatan Dasar, Edisi 1, Mitra Wacana Media, Surabaya, 2016
Endi, I Nyoman, Hartawan, Utari, Keseimbangan Cairan dan Elektrolit, Tugas Kepaniteraan Klinik Madya Bagian/SMF Ilmu Anstesi dan Terapi Intensif, Tidak Diterbitkan, Fakultas Kedokteran Universitas Udayana / RSUP Sanglah: Bali, 2017. [14] Dutta, S. & Goodsell, D., Hemoglobin, Molecule of the Month, 41, 2003.
Ibrahim, M. Z., Sarhan, A. D., Kuo, T. Y., Yusof, F., Hamdi, M. & Lee, T. M., Developing a new laser cladded FeCrMoCB metallic glass layer on nickel-free stainless-steel as a potential superior wearresistant coating for joint replacement implants, Surface and Coatings Technology, 392, 2020, 125755.
International Organization of Standardization, "Implants for Surgery. Wear of total Hip Prostheses," ISO 14242, 2012.
Johson, M., Fetal Bovine Serum, Materials and Methods, Labome, 2012; 2:117, (Online), (https://www.labome.com/method/Fetal-BovineSerum.html, diakses 14 Desember 2020).
US Water Systems, Deionized Water vs Distilled Water, US Water Systems, (Online), 2020 (https://www.uswatersystems.com/deionizedwater-vs-distilled-water, diakses 14 Desember 2020).
US FDA, Use of International Standard ISO 10993-1, "Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process", U.S. Department of Health and Human Services Food and Drug Administration, 2020.
Relvas, C., Reis, J., Potes, J., Fanseca, F. & Simoes, J., Rapid Manufacturing System of Orthopedic Implants, 2009.
Crosby, K., Titanium-6Aluminum-4Vanadium For Functionally Graded Orthopedic Implant Applications, Doctoral Dissertations, UCONN Library, University of Connecticut, 218:2013.
Bologa, Octavian & Breaz, Radu & Racz, Sever-Gabriel & Crenganiş, Mihai. Decision-making Tool for Moving from 3-axes to 5-axes CNC Machine-tool. Procedia Computer Science, 91, 184-192, 2016.
US EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks, United States Environmental Protection Agency, (Online), 2020 (https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gasemissions-and-sinks, diakses 1 Desember 2020).
3DEO, Environmental Impact of Additive Manufacturing, 3DEO, (Online), July 2018 (https://news.3deo.co/environmental-impact-ofadditive-manufacturing, diakses 25 November 2020).
Tilton, M., Lewis, G. S. & Manogharan, G. P., Additive Manufacturing of Orthopedic Implants. Springer International Publishing AG, part of Springer Nature, Pennsylvania: University, Hershey USA, 2018.
3DEO, Costs of Traditional vs. Additive Manufacturing, 3DEO, (Online), August 2017 (https://www.3deo.co/strategy/costs-oftraditional-vs-additive-manufacturing/, diakses 25 November 2020).