Analisis Statik Bus Konversi Listrik Berbasis Ladder Frame Chassis
DOI:
https://doi.org/10.5614/MESIN.2023.29.2.5Abstract
Konversi kendaraan Internal Combustion Engine (ICE) menjadi kendaraan Listrik dapat mempercepat peningkatan jumlah populasi Electric Vehicle (EV) yang mengurangi emisi gas carbon. Makalah ini menjelaskan proses analisis statik yang merupakan salah satu bagian penting saat mengkonversi bus berbasis ICE menjadi bus listrik. Bus yang dikonversi perlu memperhatikan pembebanan statik, khususnya berat dan posisi Center of Gravity (CoG) pada struktur sasis karena mempengaruhi performa Bus. Penimbangan massa dilakukan pada sasis untuk mengetahui letak CoG setiap kondisi. Massa sasis dengan muatan komponen elektrik setelah ditimbang adalah 2774 kg sedangkan massa sasis model CAD 2760,78 kg. Persentase error massa sasis pada CAD terhadap massa sasis hasil pengukuran cukup baik, yaitu 0,48%. Total perhitungan massa komponen elektrik dan upperstructure adalah 1612 kg dan 2854,4 kg. Analisis distribusi beban sepanjang sasis menggunakan pendekatan Finite Element Analysis dengan menerapkan metode analisis linear statik. Pembebanan komponen elektrik menghasilkan maksimum displacement 3,49 mm, von Mises stress 78,47 MPa dan reaction force -577,4 N pada sasis. Sedangkan, pembebanan total dengan menambahkan upperstructure menghasilkan maksimum displacement 4,58 mm, von Mises stress 83,95 MPa, dan reaction force -1174 N dengan nilai safety factor 5,24. Perbandingan error nilai defleksi suspensi depan dan belakang antara simulasi dengan teoritik adalah 4,99% dan 4,93%. Hasil investigasi menunjukan nilai kekakuan pada suspensi pegas daun depan dan belakang masing-masing sekitar 285 N/mm dan 320 N/mm. Selain itu, struktur sasis dengan pembebanan total mengalami tegangan maksimum di sekitar suspensi belakang.
References
Feng, S. & Magee, C.L., Technological development of key domains in electric vehicles: Improvement rates, technology trajectories, and key assignees, Applied Energy, 260, article number 114264, 2020.
Qin, Z., Luo, Y., Li, K. & Peng, H., Optimal design of a novel hybrid electric powertrain for tracked vehicles, Energies, 10(12), article number 2141, 2017.
Arifurrahman, F., Budiman, B.A. & Aziz, M., On the Lightweight Structural Design for Electric Road and Railway Vehicles using Fiber Reinforced Polymer Composites ? A Review, International Journal of Sustainable Transportation Technology, 1(1), pp. 21-29, 2018.
Brtka, E., Jotanovic, G., Stjepanovic, A., Jausevac, G., Kosovac, A., Cvitic I. & Kostadinovic, M., Model of hybrid electric vehicle with two energy sources, Electron, 11(13), article number 1933, 2022.
Hampel, Bus konversi diesel ke elektrik oleh e-trofit, Germany, (8 Agustus 2021). (https://www.sustainable-bus.com/news/pepper-motion-new-name-etro-fit/)
Ji, S. & Cherry, R., Electric Vehicles in China: Emissions and Health Impacts, Environmental science & technology, 46(4), pp. 2018-2024, 2012.
Li, S., Li, J., Li, N. & Gao, Y., Vehicle Cycle Analysis Comparison of Battery Electric Vehicle and Conventional Vehicle in China, KSAE 2013 International Powertrains, Fuels & Lubricants Meeting, article number 2013-01-2581, 2013.
Sinha, N. & Kumar, K., Efficacy of vehicle chassis of polymeric composite, Mater. Today Proc, 22(4), pp. 2638-2646, 2020.
Patel, T. & Bhatt, M. G., Analysis and Design Modification of a Chassis: An Analytical Investigation, Lap Lambert Academic Publishing, 2012.
UN-ECE Regulation No. 66, Uniform Provisions Concerning the Approval of Large Passenger Vehicles eith Regard to The Strength of Their Superstructure, pp. 13-14, 2002.
Cavazzuti, M., Baldini, A., Bertocchi, E., Costi, D., Torricelli, E. & Moruzzi, P., High performance automotive chassis design: a topology optimization based approach, Structural and Multidisciplinary Optimization, 44, pp. 45-56, 2011.
Gauchia, A., Diaz, V., Boada, M.J.L. & Boada, B.L., Torsional stiffness and weight optimization of a real bus structure, International Journal of Automotive Technology, 11, pp. 41-47, 2010.
Guron, B.R., Finite element analysis of cross member bracket of truck chassis, IOSR J. Eng, 3(03), pp. 10?16, 2013.
Duddeck, F., Multidisciplinary optimization of car bodies, Structural and Multidisciplinary Optimization, 35, pp. 375?389, 2008.
Salzano, A. & Klang, E., Design, Analysis and Fabrication of a Formula SAE Chassis, Wolfpack motorsports, College of Engineering North Carolina state university, 2009.
Brancheau, J.E., Practical Aspect of Finite Element Simulation, A Study Guide, Altair University, pp. 170, 2019.
Khannukar, K., Kallannavar, V. & Manjunath, B.S., Dynamic Analysis of Automotive Chassis Using FEA, International Research Journal of Engineering and Technology (IRJET), 2(9), pp. 2165-2170, 2015.
Nazri, N. & Sani, M.S.M., Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure, in 4th International Conference on Mechanical Engineering Research (ICMER2017), 257, article number 012059, 2017.
Patel, A.S. & Chitransh, J., Design and Analysis of TATA 2518TC Truck Chassis Frame with Various Cross Sections Using CAE Tools, International Journal of Engineering Sciences & Research Technology, 5(9), pp. 692-714, 2016.
Mott, R.L. & Vavrek, E.M., Machine Elements in Mechanical Design, Pearson, 2018.
Lui, E.M. & Oguzmert, M., Structural analysis, 2nd edition, 2004.
Majid, I. A., Laksono, F. B., Suryanto, H. & Prabowo, A. R., Structural assessment of ladder frame chassis using FE analysis: A designed construction referring to ford AC cobra, Procedia Structural Integrity, 33, pp. 35?42, 2021
Nozdrzykowski, K., Grzadziel, Z., Grzejda, R., Warzeceha, M. & Stepien M., An Analysis of Reaction Forces in Crankshaft Support Systems, Lubricants, 10(7), article number 151, 2022.
Sta?co, M. & Dzia?ak, P., Effect of the semi-elliptic spring mounting on its stiffness, Materials Today: Proocedings, 32(2), pp. 50-371, 2020.
Hernandez, G.P., SAE, Spring Design Manual, Design and Application of Leaf Springs, Society of Automotive Engineers, 1990.
