THERMODYNAMIC PROPERTY MODEL OF WIDE-FLUID PHASE n-BUTANE

Authors

  • Chan Sarin
  • I Made Astina
  • Prihadi Setyo Darmanto
  • Haruki Sato

Abstract

New thermodynamic property model for n-Butane expressed in form of the Helmholtz free energy equation is presented. The formulation consists of eight terms of the so-called ideal-gas part and eighteen terms of the residual part. This is a relatively short equation in comparison to the existing equations, which are widely accepted, including the newly published in year 2006. In its development, available accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures, especially at low temperatures in which the refrigeration field is concerned. From the coverage of experimental data used in model's development, the validity range is then from triple-point (134.895 K) to temperature of 589 K and pressure up to 69 MPa. The uncertainties with respect to different properties are estimated to be 0.02% in ideal-gas isobaric specific heat, 0.2% in density, 1% in heat capacities, 0.2% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% and 0.8% in speed of sound in the vapour and liquid phases, respectively.

References

D. B1/4cker and W. Wagner, Reference Equations of

State for the Thermodynamic Properties of Fluid

Phase n-Butane and Isobutane, J. Phy. Chem. Ref.

Data, 35(2): 929-1019, 2006.

E. W. Lemmon, M. O. McClinden, and M. L. Huber,

REFPROP, Reference Fluid Thermodynamic and

Transport Properties, NIST Standard Reference

Database 23, Ver. 7.0., NIST, U.S. Dept.

Commerce, Washington D.C., 2002.

H. Miyamoto and K. Watanabe, A Thermodynamic

Property Model for Fluid-Phase n-Butane, Int. J.

Thermophys., 22(2): 459-475, 2001.

B. A. Younglove and J. F. Ely, Thermophysical

Properties of Fluids. II. Methane, Ethane, Propane,

Isobutane, and Normal Butane, J. Phys. Chem. Ref.

Data, 16: 577-798, 1987.

M. O. McLinden, S. A. Klein, E. W. Lemmon, and

A. P. Peskin, NIST Thermodynamic and Transport

Properties of Refrigerants and Refrigerant Mixtures

(REFPROP), Ver. 6.01., NIST, U.S. Dept.

Commerce, Washington D.C., 1998.

I M. Astina, Development of Fundamental

Equations of State for Thermodynamic Properties of

HFC Refrigerants, Ph.D. Dissertation, Keio

University, Japan, 2003.

S. Glos, R. Kleinrahm, and W. Wagner,

Measurement of the (p, r, T) Relation of Propane,

Propylene, n-Butane, and Isobutane in the

Temperature Range from (95 to 340) K at Pressure

up to 12 MPa Using an Accurate Two-sinker Densimeter, J. Chem. Thermodyn., 36: 1037-1059,

Y. Kayukawa, M. Hasumoto, Y. Kano, and K.

Watanabe, Liquid-Phase Thermodynamic Properties

for Propane (1), n-Butane (2), and Isobutane (3), J.

Chem. Eng. Data, 50: 556-564, 2005.

P. J. Mohr and B. N. Taylor, CODATA

Recommended Values of the Fundamental Physical

Constants: 1998., J. Phys. Chem. Ref. Data, 28:

-1852, 1999.

T. B. Coplen, Atomic Weights of the Elements

, J. Phys. Chem. Ref. Data, 26: 1239, 1997.

W. M. Haynes, Measurements of Densities and

Dielectric Constants of Liquid Normal Butane from

to 300 K at Pressure up to 35 MPa, J. Chem.

Thermodyn., 15(9): 801-805, 1983.

S. S. Chen, R. C. Wilhoit, and B. J. Zwolinski, Ideal

Gas Thermodynamic Properties and Isomerization of

n-Butane and Isobutane, J. Phys. Chem. Ref. Data,

: 859-869, 1975.

M. Jaeschke and P. Schley, Ideal-Gas

Thermodynamic Properties for Natural-Gas

Applications, Int. J. Thermophys., 16(6): 1381-1392,

R. H. Olds, H. H. Reamer, B. H. Sage, and W. N.

Lacey, Phase Equilibria in Hydrocarbon Systems,

Volumetric Behavior of n-Butane, Ind. Eng. Chem.,

(3): 282-284, 1944.

W. B. Kay, Pressure-Volume-Temperature Relations

for n-Butane. Ind. Eng. Chem., 32(3): 358-360,

D. Gupta and P. T. Eubank, Density and Virial

Coefficients of Gaseous Butane from 265 to 450 K

at Pressures to 3.3 MPa, J. Chem. Eng. Data, 42(5):

-970, 1997.

J. A. Beattie, G. L. Simard, and G.-J. Su, The

Vapour Pressure and Critical Constants of Normal

Butane. J. Am. Chem. Soc., 61: 24-26, 1939.

M. B. Ewing, A. R. H. Goodwin, M. L. Mcglashan,

and J. P. M. Trusler, Thermodynamic Properties of

Alkanes from Speeds of Sound Determined Using a

Spherical Resonator, 2. n-Butane, J. Chem.

Thermodyn., 20: 243-256, 1988.

R. Niepmann, Thermodynamic Properties of

Propane and n-butane. 2. Speeds of Sound in the

Liquid up to 60 MPa, J. Chem. Thermodyn., 16:

-860, 1984.

J. W. Magee and T. O. D. L1/4ddeckke, Molar Heat

Capacity at Constant Volume of n-Butane at

Temperatures from 141 to 342 K and at Pressures to

MPa, Int. J. Thermophys., 19(1): 129-144, 1998.

B. P. Dailey and W. A. Felsing, Heat Capacities of

and Hindered Rotation in n-Butane and Isobutane, J.

Am. Chem. Soc. 65: 44-46 1943.

B. H. Sage, D. C. Webster and W. N. Lacey, Phase

Equilibrium in Hydrocarbon Systems, XX Isobaric

Heat Capacity of Gaseous Propane, n-Butane,

Isobutane, and n-Pentane, Ind. Eng. Chem., 29:

-1314, 1937.

H. Kratzke, E. Spillner and S. M1/4ller,

Thermodynamic Properties for n-Butane, 1. The

Vapour Pressure of Liquid n-Butane, J. Chem.

Thermodyn., 14:1175-1181, 1982.

P. Sliwinski, Die Lorentz-Lorenz-Funktion von

Dampffrmigem und Fl1/4ssigem ,than, Propan und

Butan, Z. Phys. Chem. Neue. Folge., 68: 263-279,

R. Span and W. Wagner, On the Extrapolation

Behavior of Empirical Equations of State, Int. J.

Thermophys., 18(6): 1415-1443, 1997.

H. Holldorff and H. Knapp, Vapour Pressures of n-

Butane, Dimethyl Ether, Methyl Chloride, Methanol

and the Vapor-Liquid Equilibrium of Dimethyl

Ether-Methanol, Fluid Phase Equilib., 40: 113-125,

J. L. Flebbe, D. A. Barclay and D. B. Manley, Vapor

Pressures of Some C4 Hydrocarbons and Their

Mixtures. J. Chem. Eng. Data., 27: 405-412, 1982.

T. Sako, S. Horiguchi, H. Ichimaru and S.

Nakagawa, Vapour Pressure of Chlorine Trifluoride

from 300 K to 317 K, J. Chem. Eng. Data., 42(1):

-171, 1997.

W. D. Machin and P. D. Golding, Vapour Pressure

of Butane from 173 to 280 K, J. Chem. Soc., 85(8):

-2239, 1989.

J. E. Orrit and J. M. Laupretre, Density of Liquefied

Natural Gas Components, Adv. Cryog. Eng., 23:

-579, 1978.

C. R. McClune, Measurement of the Densities of

Liquefied Hydrocarbons from 93 to 173 K,

Cryogenics, 16(5): 289-295, 1976.

W. M. Haynes and M. J. Hiza, Measurements of the

Orthobaric Liquid Densities of Methane, Ethane,

Propane, Isobutane and Butane, J. Chem.

Thermodyn., 9: 179-187, 1977.

W. M. Haynes and R. D. Goodwin, Thermophysical

Properties of Normal Butane from 135 to 700 K at

Pressures to 70 MPa. NBS monograph 169 (U.S.

Department Commerce, Washington, DC, 1982),

p.197.

Downloads

Published

2017-05-15

How to Cite

Sarin, C., Astina, I. M., Darmanto, P. S., & Sato, H. (2017). THERMODYNAMIC PROPERTY MODEL OF WIDE-FLUID PHASE n-BUTANE. Mesin, 22(2), 44-54. Retrieved from https://journals.itb.ac.id/index.php/jtms/article/view/4979

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>