THERMODYNAMIC PROPERTY MODEL OF WIDE-FLUID PHASE n-BUTANE
Abstract
New thermodynamic property model for n-Butane expressed in form of the Helmholtz free energy equation is presented. The formulation consists of eight terms of the so-called ideal-gas part and eighteen terms of the residual part. This is a relatively short equation in comparison to the existing equations, which are widely accepted, including the newly published in year 2006. In its development, available accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures, especially at low temperatures in which the refrigeration field is concerned. From the coverage of experimental data used in model's development, the validity range is then from triple-point (134.895 K) to temperature of 589 K and pressure up to 69 MPa. The uncertainties with respect to different properties are estimated to be 0.02% in ideal-gas isobaric specific heat, 0.2% in density, 1% in heat capacities, 0.2% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% and 0.8% in speed of sound in the vapour and liquid phases, respectively.
References
D. B1/4cker and W. Wagner, Reference Equations of
State for the Thermodynamic Properties of Fluid
Phase n-Butane and Isobutane, J. Phy. Chem. Ref.
Data, 35(2): 929-1019, 2006.
E. W. Lemmon, M. O. McClinden, and M. L. Huber,
REFPROP, Reference Fluid Thermodynamic and
Transport Properties, NIST Standard Reference
Database 23, Ver. 7.0., NIST, U.S. Dept.
Commerce, Washington D.C., 2002.
H. Miyamoto and K. Watanabe, A Thermodynamic
Property Model for Fluid-Phase n-Butane, Int. J.
Thermophys., 22(2): 459-475, 2001.
B. A. Younglove and J. F. Ely, Thermophysical
Properties of Fluids. II. Methane, Ethane, Propane,
Isobutane, and Normal Butane, J. Phys. Chem. Ref.
Data, 16: 577-798, 1987.
M. O. McLinden, S. A. Klein, E. W. Lemmon, and
A. P. Peskin, NIST Thermodynamic and Transport
Properties of Refrigerants and Refrigerant Mixtures
(REFPROP), Ver. 6.01., NIST, U.S. Dept.
Commerce, Washington D.C., 1998.
I M. Astina, Development of Fundamental
Equations of State for Thermodynamic Properties of
HFC Refrigerants, Ph.D. Dissertation, Keio
University, Japan, 2003.
S. Glos, R. Kleinrahm, and W. Wagner,
Measurement of the (p, r, T) Relation of Propane,
Propylene, n-Butane, and Isobutane in the
Temperature Range from (95 to 340) K at Pressure
up to 12 MPa Using an Accurate Two-sinker Densimeter, J. Chem. Thermodyn., 36: 1037-1059,
Y. Kayukawa, M. Hasumoto, Y. Kano, and K.
Watanabe, Liquid-Phase Thermodynamic Properties
for Propane (1), n-Butane (2), and Isobutane (3), J.
Chem. Eng. Data, 50: 556-564, 2005.
P. J. Mohr and B. N. Taylor, CODATA
Recommended Values of the Fundamental Physical
Constants: 1998., J. Phys. Chem. Ref. Data, 28:
-1852, 1999.
T. B. Coplen, Atomic Weights of the Elements
, J. Phys. Chem. Ref. Data, 26: 1239, 1997.
W. M. Haynes, Measurements of Densities and
Dielectric Constants of Liquid Normal Butane from
to 300 K at Pressure up to 35 MPa, J. Chem.
Thermodyn., 15(9): 801-805, 1983.
S. S. Chen, R. C. Wilhoit, and B. J. Zwolinski, Ideal
Gas Thermodynamic Properties and Isomerization of
n-Butane and Isobutane, J. Phys. Chem. Ref. Data,
: 859-869, 1975.
M. Jaeschke and P. Schley, Ideal-Gas
Thermodynamic Properties for Natural-Gas
Applications, Int. J. Thermophys., 16(6): 1381-1392,
R. H. Olds, H. H. Reamer, B. H. Sage, and W. N.
Lacey, Phase Equilibria in Hydrocarbon Systems,
Volumetric Behavior of n-Butane, Ind. Eng. Chem.,
(3): 282-284, 1944.
W. B. Kay, Pressure-Volume-Temperature Relations
for n-Butane. Ind. Eng. Chem., 32(3): 358-360,
D. Gupta and P. T. Eubank, Density and Virial
Coefficients of Gaseous Butane from 265 to 450 K
at Pressures to 3.3 MPa, J. Chem. Eng. Data, 42(5):
-970, 1997.
J. A. Beattie, G. L. Simard, and G.-J. Su, The
Vapour Pressure and Critical Constants of Normal
Butane. J. Am. Chem. Soc., 61: 24-26, 1939.
M. B. Ewing, A. R. H. Goodwin, M. L. Mcglashan,
and J. P. M. Trusler, Thermodynamic Properties of
Alkanes from Speeds of Sound Determined Using a
Spherical Resonator, 2. n-Butane, J. Chem.
Thermodyn., 20: 243-256, 1988.
R. Niepmann, Thermodynamic Properties of
Propane and n-butane. 2. Speeds of Sound in the
Liquid up to 60 MPa, J. Chem. Thermodyn., 16:
-860, 1984.
J. W. Magee and T. O. D. L1/4ddeckke, Molar Heat
Capacity at Constant Volume of n-Butane at
Temperatures from 141 to 342 K and at Pressures to
MPa, Int. J. Thermophys., 19(1): 129-144, 1998.
B. P. Dailey and W. A. Felsing, Heat Capacities of
and Hindered Rotation in n-Butane and Isobutane, J.
Am. Chem. Soc. 65: 44-46 1943.
B. H. Sage, D. C. Webster and W. N. Lacey, Phase
Equilibrium in Hydrocarbon Systems, XX Isobaric
Heat Capacity of Gaseous Propane, n-Butane,
Isobutane, and n-Pentane, Ind. Eng. Chem., 29:
-1314, 1937.
H. Kratzke, E. Spillner and S. M1/4ller,
Thermodynamic Properties for n-Butane, 1. The
Vapour Pressure of Liquid n-Butane, J. Chem.
Thermodyn., 14:1175-1181, 1982.
P. Sliwinski, Die Lorentz-Lorenz-Funktion von
Dampffrmigem und Fl1/4ssigem ,than, Propan und
Butan, Z. Phys. Chem. Neue. Folge., 68: 263-279,
R. Span and W. Wagner, On the Extrapolation
Behavior of Empirical Equations of State, Int. J.
Thermophys., 18(6): 1415-1443, 1997.
H. Holldorff and H. Knapp, Vapour Pressures of n-
Butane, Dimethyl Ether, Methyl Chloride, Methanol
and the Vapor-Liquid Equilibrium of Dimethyl
Ether-Methanol, Fluid Phase Equilib., 40: 113-125,
J. L. Flebbe, D. A. Barclay and D. B. Manley, Vapor
Pressures of Some C4 Hydrocarbons and Their
Mixtures. J. Chem. Eng. Data., 27: 405-412, 1982.
T. Sako, S. Horiguchi, H. Ichimaru and S.
Nakagawa, Vapour Pressure of Chlorine Trifluoride
from 300 K to 317 K, J. Chem. Eng. Data., 42(1):
-171, 1997.
W. D. Machin and P. D. Golding, Vapour Pressure
of Butane from 173 to 280 K, J. Chem. Soc., 85(8):
-2239, 1989.
J. E. Orrit and J. M. Laupretre, Density of Liquefied
Natural Gas Components, Adv. Cryog. Eng., 23:
-579, 1978.
C. R. McClune, Measurement of the Densities of
Liquefied Hydrocarbons from 93 to 173 K,
Cryogenics, 16(5): 289-295, 1976.
W. M. Haynes and M. J. Hiza, Measurements of the
Orthobaric Liquid Densities of Methane, Ethane,
Propane, Isobutane and Butane, J. Chem.
Thermodyn., 9: 179-187, 1977.
W. M. Haynes and R. D. Goodwin, Thermophysical
Properties of Normal Butane from 135 to 700 K at
Pressures to 70 MPa. NBS monograph 169 (U.S.
Department Commerce, Washington, DC, 1982),
p.197.