Model Optimasi Pemeliharaan Jalan Multi Tahun dengan Batasan Anggaran

https://doi.org/10.5614/jts.2019.26.2.6

Authors

  • Febri Zukhruf Faculty of Civil and Environmental Engineering ITB
  • Russ Bona Frazila
  • Jzolanda Tsavalista Burhani
  • Rafika Almira Samantha Ag

Keywords:

Pemeliharaan Jalan Multi Tahun jamak, Level Jaringan, Pemrograman Matematika, Lagrange relaxation, Greedy Heuristics

Abstract

Pavement maintenance has longtermly been perceived as an essential factor for the road network efficiency and the driver safety. However, these activities involve the challenge issues relating to the pavement aging, the deterioration mechanism, and the available budget constraints. This paper then presents an optimization model for handling the multiyear maintenance programs in the network-level by including budget constraint. The model is developed as a mathematical programming problem, in which the Lagrange relaxation-based procedure is invoked for solving the problem. The numerical examples are also presented for providing the better insight of model application, in which the model could provide not only the multiyear maintenance programs but also the optimum budget allocation by considering the expected roughness performance of road network.

Pemeliharaan perkerasan jalan telah lama dianggap sebagai faktor penting dalam menentukan efisiensi jaringan jalan. Namun, kegiatan ini selalu melibatkan tantangan yang berkaitan dengan penuaan perkerasan, mekanisme deteriorasi, dan keterbatasan anggaran yang tersedia. Artikel ini kemudian mengusulkan model optimasi matematika untuk strategi pemeliharaan jalan multi tahun pada level jaringan. Model ini bertugas untuk menentukan jenis kegiatan pemeliharaan dan waktunya dengan tujuan meminimalkan nilai International Roughness Index (IRI) melalui pengoptimalan pemanfaatan alokasi anggaran. Untuk menginvestigasi aplikabilitas dari model ini,  eksperimen numerikal dilakukan pada jaringan jalan sederhana. Hasil dari eksperimen tersebut mengindikasikan kemampuan model tidak hanya dapat digunakan untuk merencanakan kegiatan pemeliharaan multi tahun dengan batasan anggaran, akan tetapi juga dapat digunakan untuk memberikan masukan terkiat penentuan alokasi anggaran dengan mengkonsiderasikan performa yang ingin dicapai.

References

Bai, Y., Gungor, O. E., Hernandez-Urrea, J. A., Ouyang, Y., & Al-Qadi, I. L. (2015). Optimal pavement design and rehabilitation planning using a mechanistic-empirical approach. EURO Journal on Transportation and Logistics, 4(1), 57-73. https://doi.org/10.1007/s13676-014-0072-2

Carnahan, J. V., Davis, W. J., Shahin, M. Y., Keane, P. L., & Wu, M. I. (1987). Optimal Maintenance Decisions for Pavement Management. Journal of Transportation Engineering, 113(5), 554-572. https://doi.org/10.1061/(ASCE)0733-947X(1987)113:5(554)

Chan, W. T., Fwa, T. F., & Tan, C. Y. (1994). Road" Maintenance Planning Using Genetic Algorithms. I: Formulation. Journal of Transportation Engineering, 120(5), 693-709. https://doi.org/10.1061/(ASCE)0733-947X(1994)120:5(693)

Chu, J. C., & Chen, Y.-J. (2012). Optimal threshold-based network-level transportation infrastructure life-cycle management with heterogeneous maintenance actions. Transportation Research Part B: Methodological, 46(9), 1123-1143. https://doi.org/10.1016/J.TRB.2012.05.002

Chu, J. C., & Huang, K.-H. (2018). Mathematical programming framework for modeling and comparing network-level pavement maintenance strategies. Transportation Research Part B: Methodological, 109, 1-25. https://doi.org/10.1016/J.TRB.2018.01.005

Deshpande, V. P., Damnjanovic, I. D., & Gardoni, P. (2010).

Reliability-Based Optimization Models for Scheduling Pavement Rehabilitation. Computer-Aided Civil and Infrastructure Engineering, 25(4), 227-237. https://doi.org/10.1111/j.1467-8667.2009.00636.x

Fernandez, J. E., & Friesz, T. L. (1981). Influence of Demand-Quality Interrelationships on Optimal Policies for Stage Construction of Transportation Facilities. Transportation Science, 15(1), 16-31. https://doi.org/10.1287/trsc.15.1.16

Fisher, M. L. (1981). The Lagrangian Relaxation Method for Solving Integer Programming Problems. Management Science, 27(1), 1-18. https://doi.org/10.1287/mnsc.1040.0263

Friesz, T. L., & Fernandez, J. E. (1979). A model of optimal transport maintenance with demand responsiveness. Transportation Research Part B: Methodological, 13(4), 317-339. https://doi.org/10.1016/0191-2615(79)90025-0

Fwa, T. F., Chan, W. T., & Tan, C. Y. (1996). Genetic-Algorithm Programming of Road Maintenance and Rehabilitation. Journal of Transportation Engineering, 122(3), 246-253. https://doi.org/10.1061/(ASCE)0733-947X(1996)122:3(246)

Fwa, T. F., Tan, C. Y., & Chan, W. T. (1994). Road" Maintenance Planning Using Genetic Algorithms. II: Analysis. Journal of Transportation Engineering, 120(5), 710-722. https://doi.org/10.1061/(ASCE)0733-947X(1994)120:5(710)

Golabi, K., Kulkarni, R. B., & Way, G. B. (1982). A Statewide Pavement Management System. Interfaces. INFORMS. https://doi.org/10.2307/25060344

Lee, J., & Madanat, S. (2014). Joint optimization of pavement design, resurfacing and maintenance strategies with history-dependent deterioration models. Transportation Research Part B: Methodological, 68, 141-153. https://doi.org/10.1016/J.TRB.2014.06.008

Lee, J., & Madanat, S. (2015). A joint bottom-up solution methodology for system-level pavement rehabilitation and reconstruction. Transportation Research Part B: Methodological, 78, 106-122. https://doi.org/10.1016/J.TRB.2015.05.001

Lee, J., & Madanat, S. (2017). Optimal policies for greenhouse gas emission minimization under multiple agency budget constraints in pavement management. Transportation Research Part D: Transport and Environment, 55, 39-50. https://doi.org/10.1016/J.TRD.2017.06.009

Lee, J., Madanat, S., & Reger, D. (2016). Pavement systems reconstruction and resurfacing policies for minimization of life" cycle costs under greenhouse gas emissions constraints. Transportation Research Part B: Methodological, 93, 618-630. https://doi.org/10.1016/J.TRB.2016.08.016

Madanat, S. (1993). Incorporating inspection decisions in pavement management. Transportation Research Part B: Methodological, 27(6), 425-438. https://doi.org/10.1016/0191-2615(93)90015-3

Madanat, S., & Ben-Akiva, M. (1994). Optimal Inspection and Repair Policies for Infrastructure Facilities. Transportation Science, 28(1), 55-62. https://doi.org/10.1287/trsc.28.1.55

Ouyang, Y. (2007). Pavement Resurfacing Planning for Highway Networks: Parametric Policy Iteration Approach. Journal of Infrastructure Systems, 13(1), 65-71. https://doi.org/10.1061/(ASCE)1076-0342(2007)13:1(65)

Ouyang, Y., & Madanat, S. (2004). Optimal scheduling of rehabilitation activities for multiple pavement facilities: exact and approximate solutions. Transportation Research Part A: Policy and Practice, 38(5), 347-365. https://doi.org/10.1016/J.TRA.2003.10.007

Paterson, W.D.O., Attoh-Okine, B. (1992). Summary models of paved road deterioration based on HDM-III. Transp. Res. Rec. 1344, 99-105.

Rashid, M. M., & Tsunokawa, K. (2012). Trend Curve Optimal Control Model for Optimizing Pavement Maintenance Strategies Consisting of Various Treatments. Computer-Aided Civil and Infrastructure Engineering, 27(3), 155-169. https://doi.org/10.1111/j.1467-8667.2010.00671.x

Santos, J., Ferreira, A., & Flintsch, G. (2017). A multi-objective optimization-based pavement management decision-support system for enhancing pavement sustainability. Journal of Cleaner Production, 164, 1380-1393. https://doi.org/10.1016/J.JCLEPRO.2017.07.027

Tsunokawa, K., Riaz-ul-Islam, & Changyu, G. (2002). Optimal

Strategies for Highway Pavement Management in Developing Countries. Computer-Aided Civil and Infrastructure Engineering, 17(3), 194-202. https://doi.org/10.1111/1467-8667.00267

Tsunokawa, K., & Schofer, J. L. (1994). Trend curve optimal control model for highway pavement maintenance: Case study and evaluation. Transportation Research Part A: Policy and Practice, 28(2), 151-166. https://doi.org/10.1016/0965-8564(94)90035-3

Tsunokawa, K., Van Hiep, D., & Ul-Islam, R. (2006). True Optimization of Pavement Maintenance Options with What-If Models. Computer-Aided Civil and Infrastructure Engineering, 21(3), 193-204. https://doi.org/10.1111/j.1467-8667.2006.00427.x

Zhang, L., Fu, L., Gu, W., Ouyang, Y., & Hu, Y. (2017). A general iterative approach for the system-level joint optimization of pavement maintenance, rehabilitation, and reconstruction planning. Transportation Research Part B: Methodological, 105, 378-400. https://doi.org/10.1016/J.TRB.2017.09.014

Published

2019-08-01

Issue

Section

Articles