Model Optimasi untuk Restorasi Jaringan Jalan Terdampak Bencana

https://doi.org/10.5614/jts.2020.27.3.8

Authors

  • Febri Zukhruf Faculty of Civil and Environmental Engineering ITB
  • Russ Bona Frazila Kelompok Keahlian Rekayasa Transportasi, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Bandung, 40132, Indonesia

Keywords:

Model Restorasi, Jaringan Jalan, Algoritma Hungarian, Konektivitas, Distribusi Bantuan

Abstract

Terputusnya jaringan jalan pada umumnya menjadi faktor kendala utama dalam distribusi bantuan setelah terjadinya bencana. Oleh karenanya pengembangan model terkait pemulihan (i.e., restorasi) jaringan jalan telah mendapatkan perhatian lebih dari banyak peneliti. Makalah ini kemudian mengusulkan model restorasi jaringan jalan dengan mengintegrasikan konsep konektivitas dapen algoritma Hungarian. Konsep konektivitas digunakan untuk memprioritaskan jalan terdampak yang ingin diperbaiki oleh tim restorasi. Sementara itu, algoritma Hungarian digunakan untuk melakukan penugasan tim restorasi secara lebih efisien. Hasil eksperimen numerikal mengindikasikan bahwa model restorasi yang diusulkan mampu memulihkan jaringan jalan secara lebih cepat dengan biaya yang lebih murah.

References

Ahmadi, M., Seifi, A., & Tootooni, B. (2015). A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district. Transportation Research Part E: Logistics and Transportation Review, 75, 145-163. https://doi.org/10.1016/j.tre.2015.01.008

Akbari, V., & Salman, F. S. (2017). Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity. European Journal of Operational Research, 257(2), 625-640. https://doi.org/10.1016/j.ejor.2016.07.043

Allroggen, F., Wittman, M. D., & Malina, R. (2015). How air transport connects the world - A new metric of air connectivity and its evolution between 1990 and 2012. Transportation Research Part E: Logistics and Transportation Review, 80, 184-201. https://doi.org/10.1016/j.tre.2015.06.001

Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175(1), 475-493. https://doi.org/10.1016/j.ejor.2005.05.016

Bell, M. G. H., Kurauchi, F., Perera, S., & Wong, W. (2017). Investigating transport network vulnerability by capacity weighted spectral analysis. Transportation Research Part B: Methodological, 99, 251-266. https://doi.org/10.1016/j.trb.2017.03.002

Boonekamp, T., & Burghouwt, G. (2017). Measuring connectivity in the air freight industry. Journal of Air Transport Management, 61, 81-94. https://doi.org/10.1016/j.jairtraman.2016.05.003

elik, M. (2016). Network restoration and recovery in humanitarian operations: Framework, literature review, and research directions. Surveys in Operations Research and Management Science, 21(2), 47-61. https://doi.org/10.1016/j.sorms.2016.12.001

Chen, A. Y., & Yu, T. Y. (2016). Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response. Transportation Research Part B: Methodological, Vol. 91, pp. 408-423. https://doi.org/10.1016/j.trb.2016.06.004

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. https://doi.org/10.1016/0042-6989(66)90039-3

Ferrer, J. M., Martn-Campo, F. J., Ortuno, M. T., Pedraza-Martnez, A. J., Tirado, G., & Vitoriano, B. (2018). Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications. European Journal of Operational Research, 269(2), 501-515. https://doi.org/10.1016/j.ejor.2018.02.043

Hadas, Y., & Ranjitkar, P. (2012). Modeling public-transit connectivity with spatial quality-of-transfer measurements. Journal of Transport Geography, 22, 137-147. https://doi.org/10.1016/j.jtrangeo.2011.12.003

Jenelius, E., & Mattsson, L. G. (2012). Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study. Transportation Research Part A: Policy and Practice, 46(5), 746-760. https://doi.org/10.1016/j.tra.2012.02.003

Kasaei, M., & Salman, F. S. (2016). Arc routing problems to restore connectivity of a road network. Transportation Research Part E: Logistics and Transportation Review, 95, 177-206. https://doi.org/10.1016/j.tre.2016.09.012

Kuhn, H. W. (1955). The Hungarian Method for the Assignment Problem. Naval Research Logistics Quarterly Banner, 2(1-2), 83-97. https://doi.org/10.1017/CBO9781107415324.004

Lu, C. C., Ying, K. C., & Chen, H. J. (2016). Real-time relief distribution in the aftermath of disasters - A rolling horizon approach. Transportation Research Part E: Logistics and Transportation Review, 93, 1-20. https://doi.org/10.1016/j.tre.2016.05.002

Maya Duque, P. A., Dolinskaya, I. S., & Srensen, K. (2016). Network repair crew scheduling and routing for emergency relief distribution problem. European Journal of Operational Research, 248(1), 272-285. https://doi.org/10.1016/j.ejor.2015.06.026

Mishra, S., Welch, T. F., & Jha, M. K. (2012). Performance indicators for public transit connectivity in multi-modal transportation networks. Transportation Research Part A: Policy and Practice, 46(7), 1066-1085. https://doi.org/10.1016/j.tra.2012.04.006

Morshedlou, N., Gonzalez, A. D., & Barker, K. (2018). Work crew routing problem for infrastructure network restoration. Transportation Research Part B: Methodological, 118, 66-89. https://doi.org/10.1016/j.trb.2018.10.001

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics, 5(1), 32-38.

Muriel-Villegas, J. E., Alvarez-Uribe, K. C., Patino-Rodrguez, C. E., & Villegas, J. G. (2016). Analysis of transportation networks subject to natural hazards - Insights from a Colombian case. Reliability Engineering and System Safety, 152, 151-165. https://doi.org/10.1016/j.ress.2016.03.006

Nagae, T., Fujihara, T., & Asakura, Y. (2012). Anti-seismic reinforcement strategy for an urban road network. Transportation Research Part A: Policy and Practice, 46(5), 813-827. https://doi.org/10.1016/j.tra.2012.02.005

Oliveira, L. De, Albergaria, R., & Bandeira, D. M. (2019). Proposal to planning facility location using UAV and geographic information systems in a post-disaster scenario. International Journal of Disaster Risk Reduction, 36(December 2018), 101080. https://doi.org/10.1016/j.ijdrr.2019.101080

Peeta, S., Sibel Salman, F., Gunnec, D., & Viswanath, K. (2010). Pre-disaster investment decisions for strengthening a highway network. Computers and Operations Research, 37(10), 1708-1719. https://doi.org/10.1016/j.cor.2009.12.006

Rabta, B., Wankm1/4ller, C., & Reiner, G. (2018). A drone fleet model for last-mile distribution in disaster relief operations. International Journal of Disaster Risk Reduction, 28(August 2017), 107-112. https://doi.org/10.1016/j.ijdrr.2018.02.020

Sanci, E., & Daskin, M. S. (2019). Integrating location and network restoration decisions in relief networks under uncertainty. European Journal of Operational Research, 2017(xxxx). https://doi.org/10.1016/j.ejor.2019.06.012

Taylor, M. A. P., & Susilawati. (2012). Remoteness and accessibility in the vulnerability analysis of regional road networks. Transportation Research Part A: Policy and Practice, 46(5), 761-771. https://doi.org/10.1016/j.tra.2012.02.008

Wei, P., Chen, L., & Sun, D. (2014). Algebraic connectivity maximization of an air transportation network: The flight routes' addition/deletion problem. Transportation Research Part E: Logistics and Transportation Review, 61, 13-27. https://doi.org/10.1016/j.tre.2013.10.008

Zhou, Y., Wang, J., & Sheu, J. B. (2019). On connectivity of post-earthquake road networks. Transportation Research Part E: Logistics and Transportation Review, 123(December 2018), 1-16. https://doi.org/10.1016/j.tre.2019.01.009

Published

2020-12-26

Issue

Section

Articles