Study on the phenomenon of Shoaling-Breaking in Water Wave Equation Formulated Using Weighted Total Acceleration Equation
Keywords:
Complete potential velocity, weighted total acceleration, breaker heightAbstract
Abstract
This research is the continuation of previous research conducted by the author, where in this research a wave equation is developed using total acceleration equation for a function f (x, z, t) and formulated using a complete velocity potential. Based on the wave equation, shoaling-breaking model is developed and the breaker height produced by the model is examined. There is a conformity between breaker height a model and breaker height produced by the previous research.
Abstrak
Penelitian ini merupakan kelanjutan dari penelitian sebelumnya yang dilakukan oleh penulis, dimana pada penelitian tersebut dikembangkan suatu persamaan gelombang dengan mengggunakan total acceleration equation untuk suatu fungsi f (x, z, t) dan dirumuskan dengan menggunakan velocity potential yang lengkap. Berdasarkan persamaan gelombang tersebut dikembangkan model shoaling-breaking dan diteliti breaker height yang dihasilkan model. Diperoleh kesesuaian antara breaker height model yang digunakan dengan breaker height hasil penelitian terdahulu.
References
Dean, R.G., Dalrymple, R.A. (1991). Water wave mechanics for engineers and scientists. Advance Series on Ocean Engineering.2. Singapore: World Scientific. ISBN 978-981-02-0420-4. OCLC 22907242.
Gourlay, M.R. (1992). Wave set-up, wave run-up and beach water table: Interaction between surf zone hydraulics and ground water hydarulics. Coastal Eng. 17, pp. 93-144.
Hutahaean , S. (2019a). Application of Weighted Total Acceleration Equation on Wavelength Calculation. International Journal of Advance Engineering Research and Science (IJAERS). Vol-6, Issue-2, Feb-2019. ISSN-2349-6495(P)/2456-1908(O). https://dx.doi.org/10.22161/ijaers.6.2.31
Hutahaean , S. (2019b). Modified Momentum Euler Equatuin for Water Wave Modeling. International Journal of Advance Engineering Research and Science (IJAERS). Vol-6, Issue-10, Oct-2019. ISSN-2349-6495(P)/2456-1908(O). https://dx.doi.org/10.22161/ijaers.610.21
Hutahaean , S. (2019c). Water Wave Modeling Using Wave Constatnt G. International Journal of Advance Engineering Research and Science (IJAERS). Vol-6, Issue-5, May-2019. ISSN-2349-6495(P)/2456-1908(O). https://dx.doi.org/10.22161/ijaers.6.5.61
Hutahaean , S. (2019d). Water Wave Modeling Using Complete Solution of Laplace Equation. International Journal of Advance Engineering Research and Science (IJAERS). Vol-6, Issue-8, Aug-2019. ISSN-2349-6495(P)/2456-1908(O). https://dx.doi.org/10.22161/ijaers.6.8.33
Komar, P.D. and Gaughan, M.K. (1972): Airy wave theory and breaker height prediction. Proc. 13rd Coastal Eng. Conf., ASCE, pp 405-418.
Larson, M. And Kraus, N.C. (1989): SBEACH. Numerical model for simulating storm-induced beach change, Report 1, Tech. Report CERC 89-9, Waterways Experiment Station U.S. Army Corps of Engineers, 267 p.
Rattanapitikon, W. And Shibayama, T.(2000). Vervication and modification of breaker height formulas, Coastal Eng. Journal, JSCE, 42(4), pp. 389-406.
Smith, J.M. and Kraus, N.C. (1990). Laboratory study on macro-features of wave breaking over bars and artificial reefs, Technical Report CERC-90-12, WES, U.S. Army Corps of Engineers, 232 p.
Wilson, B.W., (1963). Condition of Existence for Types of Tsunami waves, paper presented at XIII th General
Wiegel,R.L. (1949). An Analysisis of Data from Wave Recorders on the Pacific Coast of tht United States, Trans.Am. Geophys. Union, Vol.30, pp.700-704.
Wiegel,R.L. (1964). Oceanographical Engineering, Prentice-Hall, Englewoods Cliffs, N.J.