Pengembangan Model Hidrograf Satuan Sintetis (HSS) DPMA-IOH dan Penerapannya pada Daerah Aliran Sungai
DOI:
https://doi.org/10.5614/jts.2020.27.1.9Keywords:
Debit puncak banjir, hidrograf satuan sintetis, hidrograf satuan, waktu ke puncak banjir, hydrograf banjirAbstract
Abstrak
Desain hidrograf banjir diperlukan untuk merencanakan infrastruktur sumber daya air seperti waduk atau bendungan. Umumnya lokasi rencana infrastruktur sumber daya air belum tersedia data hidrologi untuk mendapatkan hidrograf banjir. Model hidrograf satuan sintetis (HSS) digunakan untuk memperoleh hidrograf banjir pada lokasi yang belum tersedia data hidrologi (ungauged). Model hidrograf satuan sintetis sangat populer digunakan di Indonesia karena keterbatasan data yang tersedia dan penggunaannya yang sederhana yaitu berdasarkan karakteristik DAS. Namun untuk mendapatkan hasil hidrograf banjir yang sesuai dengan data pengamatan memerlukan kalibrasi paramater model hidrograf satuan sintetis. Model HSS DPMA-IOH merupakan salah satu model yang dikembangkan berdasarkan modifikasi metode DPMA-IOH (menghitung rata rata debit puncak banjir) yang dikembangkan oleh DPMA (Direktorat Penyelidikan Masalah Air) dan IOH (Institute of Hydrology). Metode DPMA-IOH merupakan metode empiris yang dikembangkan di Indonesia khususnya di Pulau Jawa dan Sumatera. Model HSS DPMA-IOH mengembangkan persamaan untuk menghitung debit puncak hidrograf satuan, waktu ke puncak dan waktu dasar berdasarkan karaktersitik DAS serta bentuk hidrografnya. Prediksi debit puncak hidrograf satuan ditentukan berdasarkan nilai rata-rata debit banjir tahunan yang dihitung dengan metode DPMA-IOH. Parameter waktu ke puncak dan waktu dasar ditentukan berdasarkan karakteristik DAS. Bentuk kurva hidrograf satuan menggunakan dua pendekatan yaitu pendekatan model distribusi probabilitas gamma dan berdasarkan fungsi persamaan kurva naik dan kurva turun. Model HSS DPMA-IOH yang telah dihasilkan, diterapkan pada beberapa DAS di Indonesia yaitu DAS Ciliwung-Katulampa (Pulau Jawa), DAS Palung-Surodadi (Pulau Lombok), DAS Tukad Bandung-Denpasar (Pulau Bali), DAS Tukad Nyuling-Tiyingtali (Pulau Bali), DAS Kendilo (Pulau Kalimantan) dan DAS Singkoyo (Pulau Sulawesi). Hasil ujicoba pada beberapa DAS tersebut menunjukkan bahwa model HSS DPMA-IOH memiliki koefisien Nash-Sutcliffe di atas 83 % untuk menghasilkan hidrograf banjir, sehingga dapat membantu para perencana sumber daya air dalam menjalankan tugasnya.
Abstract
Water resources infrastructure planning such as reservoirs or dams require the design of a flood hydrograph. Hydrological data are generally not available at the location of the water resources infrastructure plan. Flood hydrograph design uses hydrological data. Design of flood hydrographs at locations without hydrological data (ungauged catchment) can use synthetic unit hydrographs. The synthetic unit hydrograph model is a popular application in Indonesia because of the limited data, and its simple use which is based on the characteristics of the watershed. However, to get flood hydrograph results that are in accordance with observational data requires calibration of parameters of synthetic unit hydrograph models. The DPMA-IOH's synthetic unit hydrographs model is one of the models developed based on the modification of the DPMA-IOH method (calculating the mean annual flood discharge) developed by the DPMA (Direktorat Penyelidikan Masalah Air) and the IOH (Institute of Hydrology). This empirical method was developed in Indonesia, especially in Java and Sumatera to calculate the mean annual flood discharge.DPMA-IOH's synthetic unit hydrographs was developed basedonmean annual flood discharge and watershed characteristics to predict the unit hydrograph peak flow, time to peak and base time of ungauged catchment. Prediction of unit hydrograph peak flow is determined basedonmean annual flood discharge calculated by theDPMA-IOHmethod. The time to peak and base time parameters are determined based on the characteristics of the watershed. The unit hydrograph shape using two approaches. There are using the gamma probability distribution and a rising and limb recession curve function. The DPMA-IOH's synthetic unit hydrograph model is applied to several watersheds in Indonesia, namely the Ciliwung-Katulampa watershed (Java Island), Palung-Surodadi watershed (Lombok Island), Tukad Badung-Denpasar watershed (Bali Island), Tukad Nyuling-Tiyingtali watershed (Bali Island), Kendilo Watershed (Kalimantan Island) and Singkoyo Watershed (Sulawesi Island). The results of application in several watersheds have shown that the DPMA-IOH's synthetic unit hydrographs model has above 83 percent Nash-Sutcliffe coefficient for obtaining flood hydrographs. The DPMA-IOH's synthetic unit hydrograph model can help planners to design flood hydrographs.
References
Aron, G. and White, E.L., 1982. Fitting a gamma-distribution over a synthetic unit-hydrograph. Water Resources Bulletin 18, 95-98.
Badan Standar Nasional, 2016. Tata cara perhitungan debit banjir. Standar Nasional Indonesia No 2415. Badan Standar Nasional.
Bernard, M., 1935. An approach to determinate stream flow. Transactions of the American Society of Civil Engineers, 100, 347-362.
Bhattacharjya, R.K., 2004. Optimal design of unit hydrographs using probability distribution and genetic algorithms. Sadhana, 29(5), 499-508.
Bhunya, P.K., Mishra, S.K. and Berndtsson, R., 2003. Simplified two parameter gamma distribution for derivation of synthetic unit hydrograph. Journal of Hydrological Engineering, 8(4), 226-230.]
Bhunya, P. K., Mishra, S. K., Ojha, C. S. P. and Berndtsson, R., 2004. Parameter estimation of Betadistribution for unit hydrograph derivation. J. Hydrol. Eng. ASCE 9 (4), 325-332.
Bhunya, P.K., et al., 2005. Hybrid model for derivation of synthetic unit hydrograph. Journal of Hydrologic Engineering, 10 (6), 458-467. doi:10.1061/(ASCE)1084-0699(2005)10:6(458).
Bhunya, P.K., et al., 2007. Suitability of gamma, chi-square, Weibull and beta distributions as synthetic unit hydrographs. Journal of Hydrology, 334, 28-38. doi:10.1016/j.jhydrol.2006.09.022
Bhunya, P.K., et al., 2008. Comparison between Weibull and gamma distributions to derive synthetic unit hydrograph using Horton ratios. Water Resources Research, 44, W0442. doi:10.1029/ 2007WR006031.
Bhunya, P.K., Singh, P.K., and Mishra, S.K., 2009. Frechet and chisquare parametric expressions combined with Horton ratios to derive a synthetic unit hydrograph. Hydrological Sciences Journal, 54 (2), 274-286. doi:10.1623/hysj.54.2.274
Boyd, M.J., 1979. A storage-routing model relating drainage basin hydrology and geomorphology. Hydrological Sciences Bulletin, 24, 43-69.
Ciepielowski, A., 1987. Statistical methods of determining typical winter and summer hydrographs of ungauged catchments. In: Singh, v.P. (ed.), riedel, dordrecht, the netherlands. Flood Hydrology.
Clark, C. O., 1945. Storage and unit hydrograph. Trans. Am. Soc. Civil Engrs 110, 1419-1446.
Croley II., T.E., 1980. Gamma synthetic hydrographs. Journal of Hydrology, 47, 41-52. doi:10.1016/0022-1694(80)90046-3.
Chow, V. T., 1964. Handbook of Applied Hydrology. Mc Graw-Hill Book Co. Inc., New York
Diskin, M.H., Ince, M., and Kwabena, O.N., 1978. Parallel cascades model for urban watersheds. Journal of Hydraulics Division, Proceedings ASCE, 104 (2), 261-276
Direktorat Penyelidikan Masalah Air dan Institute of Hydrology, 1983. Flood Design Manual for Java and Sumatera. Government of The Republic of Indonesia, Ministry of Public Works, Directorate General of Water Resources Development.
Dooge, J. C. I., 1959. A general theory of the unit hydrograph. J. Geophys. Res. 64(2), 241-256.
Edson, C. G., 1951. Parameters for relating unit hydrograph to watershed characteristics. Trans. Am. Geophys. Union 32(4), 591-596.
Espey, W. H. and Altman, D. G., 1978. Nomograph for 10-minute unit hydrographs for small watersheds. Addendum 3 of Urban Runoff Control Planning, Report EPA-600/9-78-035, Environmental Protection Agency, Washington DC, USA.
Espey, W. H., Jr, Altman, D. G. and Graves, C. B., Jr., 1977. Nomograph for 10 minutes unit hydrographs for urban wartersheds. Tech. Memo. 32, Am. Soc. Civil Engrs, New York, USA.
Ginting, S., 2015. Kajian dan Efektivitas Pengendalian Banjir di DKI Jakarta. Tesis Magister Pengelolaan Sumber Daya Air, Institut Teknologi Bandung, Bandung (tidak dipublikasikan)
Ginting, S., 2019. Hidrograf satuan sintetis (HSS) DPMA-IOH dan Aplikasinya. Prosiding Pertemuan Ilmiah Tahunan (PIT) HATHI ke 36 di Kupang
Ghorbani, M. A., Kashani, M. H., and Saba Zeynali, 2013. Development of Synthetic Unit Hydrograph Using Probability Models. Research in Civil and Environmental Engineering 2013 1 (01) 54-66.
Gray, D. M., 1961. Synthetic unit hydrograph for small drainage areas. J. Hydraul. Div. ASCE 87(4), 33-54.
Gray, D.M., 1962. Derivation of Hydrographs for Small Watersheds From Measurable Physical Characteristics. Research Bulletin 506. Agricultural and Home Economic Experiment Station Iowa State University of Science and Technology
Gupta, V.K., Waymire, E., and Wang, C.T., 1980. A representation of an instantaneous unit hydrograph from geomorphology. Water Resources Research, 16 (5), 855-862. doi:10.1029/ WR016i005p00855.
Haktanir, T., and Sezen, N., 1990. Suitability of two-parameter gamma distribution and three-parameter beta distribution as synthetic hydrographs in Anatolia. Hydrol. Sci. J., 35 2, 167-184.
Jena, S.K. and Tiwari, K.N., 2006. Modeling synthetic unit hydrograph parameters with geomorphologic parameters of watersheds. J. Hydrol., 319:01
Limantara, L.M., 2006. Model Hidrograf Satuan Sintetis untuk DAS-DAS di Sebagian Indonesia. Disertasi Doktor, Universitas Brawijaya.
McCuen, R.H., 1989. Hydrologic analysis and design. Englewood Cliffs, NJ: Prentice-Hall.
Mondal, S.K., Jana, S., M., M. and Roy, D., 2012. A comparative study for prediction of direct runoff for a river basin using geomorphological approach and artificial neural networks. Applied Water Science, 2(1), 1-13
Nadarajah, S., 2007. Probability models for unit hydrograph derivation. Journal of Hydrology, 344, 185-189. doi:10.1016/j. jhydrol.2007.07.004.
Nash, J. E., 1958. Determining runoff from rainfall. Proc. Instn Civil Engrs London 10, 163-184.
Nash, J. E., 1959. Systematic determination of unit hydrograph parameters. J. Geophys. Res. 64(1), 111-115.
Nash, J. E., 1960. A unit hydrograph study with particular reference to British catchments. Proc. Instn Civil Engrs London 17, 249-282.
Nash, J.E., 1959. Synthetic determination of unit hydrograph parameters. Journal of Geophysical Research, 64(1), 111- 115.
Nash, J. E. and Sutcliffe, J. V., 1970. River flow forecasting through conceptual models part I " A discussion of principles, J. Hydrol., 10(3), 282-290, doi:10.1016/0022-1694(70)90255-6, 1970.
Rai, R.K., Sarkar, S., Upadhyay, A. and Singh, V.P., 2010. Efficacy of nakagami-m distribution function for deriving unit hydrograph. Water Resources Management, 24(3), 563-575.
Rodrguez-Iturbe, I. and Valdes, J., 1979. The geomorphologic structure of hydrologic response. Water Resources Research, 15 (6), 1409-1420. doi:10.1029/WR015i006p01409.
Rodrguez-Iturbe, I., Devoto, G., and Valdes, J.B., 1979. Discharge response analysis and hydrologic similarity: the interrelation between the geomorphologic IUH and the storm characteristics. Water Resources Research, 15 (6), 1435-1444. doi:10.1029/WR015i006p01435.
Rosso, 1984. Nash model relation to Horton order ratios. Water Resour Res 1984; 20(7): 914-20.
Soil Conservation Service, 1957. Use of storm and watershed characteristics in synthetic hydrograph analysis and application. V. Mockus., US Department Of Agriculture, Soil Conservation Service, Washington, DC.
Sulistyowati, A., Jayadi, R. dan Rahardjo, A.P., .2018. Unit Hydrograph Modeling using Geomorphological Instantaneous Unit Hydrograph (GIUH) Method. Journal of the Civil Engineering Forum Vol. 4 No. 3 (September 2018)
Slamet, B., 2006. Model Hidrograf Satuan Sintetik Menggunakan Parameter Morfometri (Studi Kasus DAS Ciliwung Hulu), Tesis Program Magister IPB, Bogor
Safarina, A.B., 2011. Reliability of Nakayasu Synthetic Unit Hydrograph in Various Watershed Area. Proceedings International Seminar on Water Related Risk Management, Jakarta, 15-17 July 2011, pp. 123-130.
Sherman, 1932. Streamflow from rainfall by the unit hydrograph method. Engrg News Rec 1932; 108: 501-5.
Singh, S. K., 2000. Transmuting synthetic unit hydrographs into gamma distribution. J. Hydrologic Eng., 5(4), 380-385.
Singh, V.P. and Chowdhury, P., 1985. On fitting gamma distribution to synthetic runoff hydrographs. Nordic Hydrology, 16, 177-192.
Singh, S.K., 2005. Clark's and espey's unit hydrographs vs the gamma unit hydrograph. Hydrological sciences journal, 50(6), 1053-1067.
Singh, S. K., 2004. Simplified use of gamma-distribution/Nash model for runoff modelling. J. Hydrol. Engng ASCE 9(3), 240-243.
Singh, S. K., 2000. Transmuting synthetic unit hydrograph into a gamma distribution. J. Hydrol. Engng ASCE 5(4), 380-385.
Singh, P.K., Mishra S.K. and Jain, M.K., 2014. A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods, Hydrological Sciences Journal, 59:2, 239-261, DOI: 10.1080/02626667.2013.870664.
Snyder, F.F., 1938. Synthetic unit hydrographs. Transactions American Geophysical Union, 19, 447-454.
Taylor, A. B., and Schwarz, H. E., 1952. Unit hydrograph lag and peak flow related to basin characteristics. Trans. Am. Geophys. Union, 33(2), 235-246.
Tunas, I.G., 2017. Pengembangan Model Hidrograf Satuan Sintetik Berdasarkan Karakteristik Fraktal Daerah Aliran Sungai. Disertasi Program Doktor, Institut Teknologi Sepuluh November, Surabaya.
Valdes, J.B., Fiallo, Y., and Rodrguez-Iturbe, I., 1979. A rainfall runoff analysis of the geomorphologic IUH. Water Resources Research, 15 (6), 1421-1434. doi:10.1029/WR015i006 p01421.
Weibull, W., 1939. The phenomenon of ruptures in solids. Stockholm:General stabena Litografiska Anstalts Forlag, 153.
Yue, S., Taha, B.M.J., Bobee, B., Legendre, P. and Bruneau, P., 2002.
Approach for describing statistical properties of flood hydrograph. Journal of Hydrologic Engineering, 7(2), 147-153.