# Theoretical Equations for the Ratio of Undrained Shear Strength to Vertical Effective Stress for Normally Consolidated Saturated Cohesive Soils

## Authors

• Sugeng Krisnanto Geotechnical Engineering Reseacrh Group, Faculty of Civil and Environment Engineering Bandung Institute of Technology

## Keywords:

saturated cohesive soils, c/p ratio, normally consolidated soil, undrained shear strength, effective shear strength, theoretical equation

## Abstract

Abstract

Two theoretical equations are developed to calculate the ratio of undrained shear strength to the vertical effective stress (the ratio of (su/sv’)) for normally consolidated saturated cohesive soils. The effective stress approach is used as the basis in the development of the theoretical equations. The theoretical equations are developed by relating the total and the effective stress paths. The development of the excess pore-water pressure is quantified using Skempton A and B pore-water pressure parameters. The theoretical equations are developed for two initial stress conditions: (i) an initially hydrostatic condition and (ii) an initially Ko (non-hydrostatic) condition. The performance of the theoretical equations of this study is compared with field and laboratory measurement data obtained from the literature. The close results between the theoretical equations and the measurements show that the theoretical equations of this study can compute the ratio of (su/sv’) well. Using the theoretical equations, the values of the ratio of (su/sv’) commonly used in engineering practice can be explained from the soil mechanics framework.

Keywords: Saturated cohesive soils, c/p ratio, normally consolidated soil, undrained shear strength, effective shear strength, theoretical equation.

Abstrak

Dua persamaan teoritis dikembangkan untuk menghitung rasio kuat geser tak teralirkan dengan tegangan efektif vertikal (rasio (su/sv’)) untuk tanah kohesif jenuh terkonsolidasi normal. Pendekatan tegangan efektif dijadikan dasar dalam pengembangan kedua persamaan teoretis ini. Persamaan teoretis tersebut dikembangkan menghubungkan lintasan tegangan total dan lintasan tegangan efektif. Kenaikan tekanan air pori ekses dikuantifikasi menggunakan parameter tekanan air pori A dan B dari Skempton. Persamaan teoretis dikembangkan untuk dua kondisi tegangan awal: (i) tegangan awal hidrostatik dan (ii) teganan awal Ko (non hidrostatik). Kinerja kedua persamaan teoretis tersebut dibandingkan terhadap data pengukuran lapangan dan pengujian laboratorium yang diperoleh dari literatur. Persamaan teoretis dari studi ini memiliki kinerja yang baik dalam memperhitungan rasio (su/sv’) yang ditunjukkan dengan dekatnya hasil perhitungan menggunakan persamaan teoretis dan hasil pengukuran lapangan maupun pengujan laboratorium. Dengan persamaan teoretis tersebut, nilai rasio (su/sv’) yang biasa digunakan dalam rekayasa praktis bisa dijelaskan secara mekanika tanah.

Kata-kata Kunci: Tanah kohesif jenuh, rasio c/p, tanah terkonsolidasi normal, kuat geser tak teralirkan, kuat geser efektif, persamaan teoretis.

## References

Bishop, A.W. and Wesley, L.D., 1975, Triaxial Apparatus for Controlled Path Testing, Geotechnique, Vol. 25, No. 4, pp. 657-670.

Bjerrum, L., 1954, Geotechnical Properties of Norwegian Marine Clays, Geotechnique, Vol. 4, No. 2, pp. 49-69.

Bjerrum, L., 1972, Embankment on Soft Ground, Proceedings of the ASCE Specialty Conference on Performance of Earth and Earth-Supported Structures, Purdue University, Vol. 2, pp. 1-54.

Bjerrum, L. and Simons, N.E., 1960, Comparison of Shear Strength Characteristics of Normally Consolidated Clays, Proceedings of the ASCE Research Conference on the Shear Strength of Cohesive Soils, Boulder, pp. 711-726.

Black, D.K. and Lee, K.L., 1973, Saturating of Laboratory Samples by Back Pressure, Journal of the Soil Mechanics and Foundations Division ASCE, Vol. 99, No. SM1, pp. 75-93.

Crooks, J.H.A. and Becker, D.E., 1988, Discussion of "Slide in Upstream Slope of Lake Shelbyville Dam" by D.N. Humprey and G.A. Leonards, Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 4, pp. 506-508.

Holtz, R.D., Kovacs and Kovacs, W.D., 1981, An Introduction to Geotechnical Engineering, Prentice Hall, New Jersey, 733p.

Holtz, R.D., Kovacs, W.D., Sheahan, T.C., 2011, An Introduction to Geotechnical Engineering, Second Edition, Prentice Hall, New Jersey, 863 p.

Irsyam, M., 2019, Typical ratio of su/ï³v' for Cohesive Soils in Indonesia, Personal Communication.

Irsyam, M., Krisnanto, S., Wardhani, S.P.R., 2008, Instrumented Full Scale Test and Numerical Analysis to Investigate Performance of Bamboo Pile-Mattress System as Soil Reinforcement for Coastal Embankment on Soft Clay, Geotechnical Engineering for Disaster Mitigation and Rehabilitation, Proceedings of the Second International Conference GEDMAR08, Liu, Deng and Chu (eds), pp. 165-170.

Jacky, J., 1944, A Nyulgami Nyomas Tenyezoje (The Coefficient of Earth Pressure at Rest), Magyar Mernok es Epitesz-Eglylet Kozlonye, pp. 355-358.

Jacky, J., 1948, Pressure in Silos, Proceedings of the Second Conference on Soil Mechanics and Foundation Engineering, Rotterdam, Vol. 1, pp. 102-107.

Karlsson, R. and Viberg, L., 1967, Ratio c/p' in Relation to Liquid Limit and Plasticity Index with Special Reference to Swedish Clays, Proceedings of Geotechnical Conference, Oslo, Vol. 1, pp. 43-47.

Kenney, T.C., 1959, Discussion of "Geotechnical Properties of Glacial Lake Clays" , Journal of the Soil Mechanics and Foundation Division ASCE, Vol. 85, No. SM3, pp. 67-69.

Ladd, C.C. 1975, Foundation Design of Embankments Constructed on Connectitut Valley Varved Clays, Research Report R75-7, Geotechnical Publication 343, Department of Civil Engineering, Massachusetts Institute of Technology, 438 p.

Ladd, C.C., Foote, R., Ishihara, K., Schlosser, F., Poulos, H.G., 1977, Stress-Deformation of Strength Characteristics, State-of-the-Art Report, Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp. 421-494.

Lambe. T.W. and Withman, R.V., 1969, Soil Mechanics, John Wiley & Sons, New York, 553 p.

Leonards, G.A. (Ed.), 1962, Foundation Engineering, McGraw-Hill, New York, 1136 p.

Mesri, G., 1975, Discussion of "New Engineering Procedures for Stability of Soft Clays" , Journal of the Geotechnical Engineering Division ASCE, Vol. 101, No., GT4, 409-412.

Poulus, H.G. and Davis, E.H., 1974, Elastic Solutions for Soil and Rock Mechanics, Wiley, New York, 411 p.

Skempton, A.W., 1954, The Pore Pressure Coefficients A and B, Geotechnique, Vol. 4, pp. 143-147.

Skempton, A.W., 1957, Discussion: The Planning and Design of the New Hong Kong Airport, Proceedings of the Institution of Civil Engineer, Vol. 7, No. 2, pp. 2,305-307.

Skempton, A.W. and Henkel, D.J., 1953, The Post-Glacial Clays of the Thames Estuary at Tillbury and Shellhaven, Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering, Zurich, Vol. 1, pp. 302-308.

Suwitaatmadja, K., 2011, Typical ratio of su/ï³v' for Cohesive Soils in Indonesia, Personal Communication.

Terzaghi, K., Peck, R.B., Mesri, G., 1996, Soil Mechanics in Engineering Practice Third Edition, John Wiley & Sons, New York, 549 p.

Toha, F.X., 2019, Typical ratio of su/ï³v' for Cohesive Soils in Indonesia, Personal Communication.

Toha, F.X., 2020, Challenges in Rendering Geotechnical Engineering Services during Global Pandemic, Proceeding of the 24th Annual National Conference on Geotechnical Engineering, Jakarta, pp. 1-10.

Vassallo, G.P., Parker, E.J., Practico, A., 1997, Strength Measurement of Deep Water NC Cohesive Sediments, Proceedings 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, Vol. 1, pp. 615-618.

2022-01-04

Articles