Beban Vertikal Gelombang pada Deck Dermaga di Pelabuhan Marore, Provinsi Sulawesi Utara

Authors

  • Paulus Sidabalok Institut Teknologi Bandung
  • Rildova Rildova Lecturer - Offshore Engineering Group, Faculty of Civil and Environmental Engineering, Institute Technology Bandung

DOI:

https://doi.org/10.5614/jts.2024.31.1.12

Keywords:

Pier, ANSYS fluent, wave, uplift, volume of fluid

Abstract

Abstrak

Sejumlah literatur menawarkan formulasi untuk memprediksi beban vertikal gelombang pada dermaga, namun terdapat rentang perbedaan hasil yang mengakibatkan tingkat kepercayaan yang berbeda (McConnell, Kirsty, William Allsop, and Ian Cruickshank, 2004). Pada studi ini, simulasi dilakukan dengan model numerik menggunakan ANSYS Fluent 17.2 Academic Release dengan modul Volume of Fluid (VOF), model turbulensi SST k-?, dan solver PISO. Keluaran model ini berupa seri waktu tekanan total rata-rata pada sisi yang dipilih. Pengaturan model numerik didahului dengan validasinya terhadap model fisik dan numerik dari studi terdahulu. Pengaturan model yang telah divalidasi kemudian digunakan sebagai dasar pemodelan yang diterapkan untuk kondisi perairan dan geometri dermaga yang sebenarnya, dalam empat kondisi tinggi gelombang. Keluaran tekanan total rata-rata maksimum kemudian dibandingkan dengan hasil perhitungan dari formulasi lainnya, untuk melihat kecenderungan studi terdahulu yang mendekati hasil pemodelan. Diperoleh bahwa hasil yang paling mendekati formulasi yang ditawarkan oleh Ito dan Takeda (1967) pada OCDI dengan rentang selisih ?12% hingga +29%. Keluaran tekanan maksimum ini juga dibandingkan terhadap peningkatan tinggi gelombangnya, sehingga dapat dibuat hubungan linear sederhana untuk mewakili perhitungan beban akibat gelombang. Diperoleh bahwa beban akibat gelombangnya paling mendekati formulasi yang ditawarkan oleh Elghamry dan Wang (1971) dan Overbeek dan Klabbers (2000) dengan rentang selisih ? 32% hingga +6%.

Kata-kata Kunci: Dermaga, ANSYS Fluent, gelombang, beban vertikal, volume of fluid

Abstract

Several literatures offered formulations of vertical wave loads on deck. However, the range of results led to various levels of confidence in the use of these formulations. This study performed simulations using ANSYS Fluent 17.2 Academic Release with Volume of Fluid (VOF) module, SST k-? turbulence model, and PISO solver. The output was a time series of average total pressure on the selected side. The setting of the numerical model is preceded by validation of the physical and numerical models from previous studies. The validated model was then used as the basis for modeling, which was applied to the actual water conditions and pier geometry in four wave height conditions. The maximum average total pressure was then compared with the results from other formulations to evaluate the trend which was close to previous studies. It was found that the results were closest to the formulation offered by Ito and Takeda (1967) on OCDI, with a difference of ?12% to +29%. This maximum pressure output was also compared to the increase in wave height, so a simple linear relationship can be made to represent the wave load. It was found that the load was closest to the formulation offered by Elghamry and Wang (1971) and Overbeek and Klabbers (2000), with a difference of ?32% to +6%.

Keywords: Pier, ANSYS fluent, wave, uplift, volume of fluid

Author Biographies

Paulus Sidabalok, Institut Teknologi Bandung

Alumnus of the Masters Program in Ocean Engineering

Rildova Rildova, Lecturer - Offshore Engineering Group, Faculty of Civil and Environmental Engineering, Institute Technology Bandung

Department of Ocean Engineering

References

Aguiga, Francisco, Kevin Matakis, Hector Estrada, Joseph Sai, Pat Leelani, and Jeff Shelden, 2006, Report Synthesis of Wave Load Design Methods for Coastal Bridges, Technical Report, Texas Department of Transportation, Texas A&M University, Kingsville.

ANSYS, Inc., 2013, ANSYS Fluent Theory Guide. 15.0, Canonsburg, Pennsylvania: ANSYS, Inc.

Bea, R. G., R. Iversen, and T. Xu, 2001, Wave-in-Deck Forces on Offshore Platforms, Journal of Offshore Mechanics and Arctic Engineering 123.

Bhat, Shankar Subraya, 1994, Wave Slamming on A Horizontal Plate, Thesis Report, Department of Civil Engineering, The University of British Columbia.

Bozorgnia, M, Jiin-Jen Lee, and Frederic Raichlen, 2010, Wave Structure Interaction: Role of Entraped Air on Wave Impact and Uplift Forces.

Bozorgnia, Mehrdad, 2012, Computational Fluid Dynamic Analysis of Highway Bridge Superstructures Exposed to Hurricane Waves, Faculty of The USC Graduate School, University of Southern California, Los Angeles: University of Southern California.

Bricker, J.D., Kawashima, K., and Nakayama, A., 2012, CFD Analysis of Bridge Deck Failure due to Tsunami, Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan, March 1-4, pp. 1398-1409.

Bron, V. A. G., 2013, Dynamic Analysis of an Open Piled Jetty Subjected to Wave Loading, Master Thesis, Civil Engineering, Delft University of Technology, Den Haag.

Broughton, P., and Horn, E., 1987, Ekofisk Platform 2/4C: Re-Analysis Due to Subsidence, Proc., Institution of Civil Engineers, London, UK, Part 1, Vol. 82.

Colleter, Gildas., n.d., Breaking wave uplift and overtopping on a horizontal deck using physical and numerical modelling.

Cuomo, Giovanni, Ken-ichiro Shimosako, and Shigeo Takahashi, 2007, Wave-in-deck loads on coastal bridges and the role of air, Elsevier Ltd.

Cuomo, Giovanni, Matteo Tirindelli, and William Allsop, 2006, Wave-in-deck loads on exposed jetties, Elsevier Ltd.

de Rooij, O. V., 2001, Wave Impact on Horizontal Platforms, Final Graduation Report, Faculty of Civil Engineering, TU Delft, Gouda.

Det Norske Veritas, 2010, DNV-RP-C205 Environmental Conditions and Environmental Loads, Det Norske Veritas.

ElGhamry, O.A., 1971, Wave Forces on Platform Decks, Offshore Technology Conf., Texas, OTC 1381.

Elhanafi, Ahmed, Alan Fleming, Zhi Leong, and Gregor Macfarlane, 2016, Effect of RANS-based turbulence models on nonlinear wave generation in a two-phase numerical wave tank, Progress in Computational Fluid Dynamics (Inderscience Enterprises Ltd.).

FHWA, 2009, Hydrodynamic Forces on Inundated Bridge Decks, Publication No. FHWA-HRT-09-028, U.S. Departement of Transportation, McLean, VA.

Frei, Walter, 2013, Comsol Blog, September 16, www.comsol.com/blogs/which-turbulence-model-should-choose-cfd-application.

French, Jonathan A., 1969, Wave Uplift Pressures on Horizontal Platforms, Division of Engineering and Applied Science, California Institute of Technology, Pasadena.

French, Jonathan A., 1971, Wave Uplift Pressures on Horizontal Platforms, Proc. of The Speciality Conf.: Civil Engineering in the Oceans IV, Vol. 1, pp 187-202.

Gaeta, M. Gabriella, Luca Martinelli, and Alberto Lamberti, 2012, Uplift Forces on Wave Exposed Jetties: Scale Comparison and Effect of Venting.

Hirt, C. W., and B. D. Nichols, 1979, Volume of Fluid (VOF) Method for Dynamics of Free Boundaries, Journal of Computational Physics (Academic Press, Inc.).

Huang, Wenrui, and Hong Xiao, 2007, Numerical Modeling of Dynamic Wave Force Acting on Escambia Bay Bridge Deck during Hurricane Ivan, Journal of Waterway, Port, Coastal, and Ocean Engineering 135.

Isaacson, Michael, Norman Allyn, and Colleen Ackerman, 1994, Design wave loads for a jetty at Plymouth, Montserrat, Canadian Journal of Civil Engineering.

Ito, Y., H. Takeda, 1967, Uplift on Pier Deck due to Wave Motion, Rept. of PHRI Vol. 6 No. 4, pp. 37-68.

Kaplan, P., 1992, Wave Impact Forces on Offshore Structures: Re-Examination and New Iterpretations, Offshore Technology Conf., Houston, USA, 4-7 May, OTC 6814.

Kaplan, P., Murray, J.J., Yu, W.C., 1995, Theoritical Analysis of Wave Forces on Platform Deck Structures, Proc. of the 14th International Conference on Offshore Mechanics and Arctic Engineering, Vol. I-1, ASME.

Lai, C. P., and Jiin-Jen Lee, 1989, Interaction of Finite Amplitude Waves with Platforms or Docks, Journal of Waterway, Port, Coastal, and Ocean Engineering (ASCE) 115: 19-39. http://dx.doi.org/10.1061/(ASCE)0733-950X(1989)115:1(19).

Livermore, Spencer Nathaniel, 2014, Evaluation of Tsunami Design Codes and Recommendations for Bridges Susceptible to Tsunami Inundation, Department of Civil and Environmental Engineering, University of Washington.

McConnell, Kirsty, William Allsop, and Ian Cruickshank, 2004, Piers, jetties and related structures exposed to waves: Guidelines for hydraulic loadings, London: Thomas Telford Ltd.

Meng, Yanqiu, Guoping Chen, and Shichang Yan, 2010, Wave Interaction with Deck of Jetty on A Slope.

Mohamad, Yanuardy Rahmat, 2015, Computational Fluid Dynamics Analysis for Hydrodynamic Loading on Subsea Grating, Dissertation, Subsea Engineering, University of Aberdeen, Aberdeen.

Olsson, Adam, and Martin Tunlid, 2015, CFD simulation of wave-in-deck loads on offshore structures, Master's Thesis, Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg.

Overbeek, J., Klabbers, M., 2000, Design of Jetty Decks for Extreme Vertical Wave Loads, HBG Civiel, Gouda, The Netherlands.

Ridderbos, N.L., 1999, Risicoanalvse Met Behulp van Foutenboom & Golfbelasting Ten Gevolge van ?Slamming?op Horizontale Constructie, Verslag M1335 deel 2 & 3, WL Delft.

Sheppard, D. Max, and Justin Marin, 2009, Wave Loading on Bridge Decks, Final Report, Department of Civil and Coastal Engineering, University of Florida, Gainesville.

Shih, R.W.K, Anastasiou, K., 1992, A Laboratory Study of The Wave-Induced Vertical Loading on Platform Decks, Proc. Inst. Civ. Engrs. Wat., Marit. & & Energy, 96, March, pp 19-33, Paper 9778.

Suchithra, N, and Paul Mario Koola, 1995, A Study of Wave Impact on Horizontal Slabs, Ocean Enginnering, Vol. 22, No. 7, pp 687-697.

Rayasurverindo Tirtasarana, PT, 2014, Laporan Akhir Survei dan Desain, Detail Engineering Design (DED) Pelabuhan Marore, Provinsi Sulawesi Utara, Jakarta: Kementerian Perhubungan Republik Indonesia Direktorat Jeneral Perhubungan Laut Satuan Kerja: Peningkatan Fungsi Pelabuhan dan Pengerukan Pusat.

The Overseas Coastal Area Development Institute of Japan, 2002, Technical Standards and Commentaries for Port and Harbour Facilities in Japan, Tokyo: The Overseas Coastal Area Development Institute of Japan.

Tickell, R. G., 1994, Wave forces on structures, Coastal, estuarial and harbour engineers reference book, eds. M. B. Abbott and W. A. Price. E and FN Spon, London, Chapter 28 in, pp. 369-380.

Tirindelli, Matteo, Giovanni Cuomo, William Allsop, and Alberto Lamberti, 2003, Wave-in-Deck Forces on Jetties and Related Structures, Proceedings of The Thirteenth (2003) International Offshore and Polar Engineering Conference, Honolulu: The International Society of Offshore and Polar Engineers.

US Army Corps Engineers, 2002, Coastal Engineering Manual, Part VI, Chapter 5, US Army Corps Engineers.

Versteeg, H. K., and W. Malalasekera, 1995, An introduction to computational fluid dynamics: The finite volume method, Harlow, Essex: Longman Scientific and Technical.

Wang, H., 1970, Water Wave Pressure on Horizontal Plate, Journal of The Hydraulics Division, Oct.

Xiao, Hong, Wenrui Huang, and Qin Chen, 2010, Effects of submersion depth on wave uplift force acting on Biloxi Bay Bridge decks during Hurricane Katrina, Elsevier Ltd. (Elsevier Ltd.).

Xu, Guoji, 2015, Investigating Wave Forces on Coastal Bridge Decks, Dissertation, Department of Civil and Environmental Engineering, Louisiana State University and Agricultural and Mechanical College.

Published

2024-06-03

How to Cite

Sidabalok, P., & Rildova, . R. (2024). Beban Vertikal Gelombang pada Deck Dermaga di Pelabuhan Marore, Provinsi Sulawesi Utara. Jurnal Teknik Sipil, 31(1), 107-118. https://doi.org/10.5614/jts.2024.31.1.12