Pengaruh Penambahan Nano Silika terhadap Volumetrik dengan Metode Pemadatan Marshall dan Superpave pada Campuran Beraspal Ac-Wc
DOI:
https://doi.org/10.5614/jts.2022.30.1.9Keywords:
Asphalt mixture, asphalt content, filler, nanosilicaAbstract
Abstract
Nanotechnology is an engineering technology on materials into atomic or molecular sizes. One of the unique properties of nanomaterials is that have a large surface fraction and high surface performance. This study aims to determine the effect of the addition of nanomaterials on hot mix asphalt (AC-WC). The nano material used is silica from Bangka Belitung quartz sand which is processed into nano silica by Balai Besar Keramik Bandung. The asphalt used in the mixture is asphalt pen 60/70 produced by Pertamina. Nano silica is used as a filler substitution so that is can reduce the asphalt content which could be seen from the optimum asphalt content value with mixed variations of 1%, 2%, 3% nano silica when compared to conventional asphalt mixtures. In addition, using different compactor has an effect on nano silika mixture asphalt density. It can be seen that density value from superpave gyratori compactor (SGC) is lower than marshall compactor. In addition, the difference in the compaction method also affects the number of void in mixture and specimen height.
Keyword: Asphalt mixture, asphalt content, filler, nanosilica.
References
Arshad, A. K., Samsudin, M. S., Masri, K. A., Karim, M. R., & Halim, A. G. A. (2017). Multiple Stress Creep and Recovery Nanosilica Modified Asphalt Binder. MATEC Web of Conference, 09005.
Asphalt Institute. (2009). MS-2 7 th Edition Asphalt Mix Design Methods. In ASTM International: Vol. i (Issue 111).
Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17?MR71.
Crucho, J. M. L., Neves, J. M. C. das, Capit, S. D., & Picado-Santos, L. G. de. (2018). Mechanical performance of asphalt concrete modified with nanoparticles: Nanosilica, zero-valent iron and nanoclay. Construction and Building Materials, 181, 309?318.
Cui, W., Chen, L., Yu, Z., & Qin, L. (2014). Feasibility research on superpave gyratory compactor method design mix of stone mastic asphalt. Key Engineering Materials, 599, 159?163.
Ghanoon, S. A., & Tanzadeh, J. (2019). Laboratory evaluation of nano-silica modification on rutting resistance of asphalt Binder. Construction and Building Materials, 223, 1074?1082.
Gong, X., Dong, Z., Wang, H., Ma, X., Yu, H., & Hu, K. (2019). Rheological characterization of asphalt fine aggregate matrix using dynamic shear rheometer. Polymers, 11(8).
Hadiwardoyo, S. P., Imansyah, F. N. P., Sumabrata, R. J., & Iskandar, D. (2020). Rut depth characteristics on hot mix asphalt with addition nano crumb rubber. Civil Engineering and Architecture, 8(4), 525?532.
Iriansyah. (2011). Kajian aplikasi pasir kuarsa sebagai campuran lapis pondasi pasir aspal emulsi. Pusat Litbang Jalan Dan Jembatan, 28 No 2, 97?110.
Jiang, Y., Zhang, Y., Xue, J., Deng, C., & Tian, T. (2020). Performance of stone mastic asphalt mixtures fabricated by different compaction methods. Applied Sciences (Switzerland), 10(7).
Leiva-villacorta, F., & Vargas-nordcbeck, A. (2017). Optimum content of nano-silica to ensure proper performance of an asphalt binder. Road Materials and Pavement Design, 0629 (October).
Moeini, A. R., Badiei, A., & Rashidi, A. M. (2019). Effect of nanosilica morphology on modification of asphalt binder. Road Materials and Pavement Design, 0(0), 1?17.
Nazari, H., Naderi, K., & Moghadas, F. (2018). Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Construction and Building Materials, 170, 591?602
Pradoto, R., Puri, E., Hadinata, T., & Rahman, Q. D. (2020). Improving strength of porous asphalt: A nano material experimental approach. IOP Conference Series: Materials Science and Engineering, 849(1).
Saltan, M., Terzi, S., & Karahancer, S. (2017). Examination of hot mix asphalt and binder performance modified with nano silica. Construction and Building Materials, 156, 976?984.
Shafabakhsh, G. H., & Ani, O. J. (2015). Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Construction and Building Materials, 98, 692?702.
Sihombing, A. V. R. (2020). Bioaspal Sebagai Rejuvenator RAP dan Modifier Asbuton dalam Campuran Beraspal Panas, Disertasi, Institut Teknologi Bandung.
Sukhija, M., Saboo, N., Yadav, A. K., & Rath, C. (2021). Laboratory study on the suitability of nano-silica as a modifier for asphalt binders. Construction and Building Materials, 302(July), 124406.
Taherkhani, H., & Tajdini, M. (2019). Comparing the effects of nano-silica and hydrated lime on the properties of asphalt concrete. Construction and Building Materials, 218, 308?315.
Underwood, B. S., Asce, A. M., Kim, Y. R., & Asce, F. (2013). Microstructural Association Model for Upscaling Prediction of Asphalt Concrete Dynamic Modulus. 25(September), 1153?1161.
Yao, H., You, Z., Li, L., Lee, C. H., Wingard, D., Yap, Y. K., Shi, X., & Goh, S. W. (2013). Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica. Journal of Materials in Civil Engineering, 25(11), 1619?1630.
Yin, A., Yang, X., Yang, S., & Jiang, W. (2011). Multiscale fracture simulation of three-point bending asphalt mixture beam considering material heterogeneity. Engineering Fracture Mechanics, 78(12), 2414?2428.
You, Z., Mills-Beale, J., Foley, J. M., Roy, S., Odegard, G. M., Dai, Q., & Goh, S. W. (2011). Nanoclaymodified asphalt materials: Preparation and characterization. Construction and Building Materials, 25(2), 1072?1078.
Yusoff, N. I. M., Breem, A. A. S., Alattug, H. N. M., Hamim, A., & Ahmad, J. (2014). The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Construction and Building Materials, 72, 139?147.