Evaluasi Kinerja Struktur Jembatan Kabel Pancang Pasupati Bandung

Authors

  • Made Suarjana Civil and Environmental Engineering Faculty, Institut Teknologi Bandung, Lebak Siliwangi, Coblong, Bandung City, West Java, 40132,
  • Punto Budiharto Direktorat Jendral Bina Marga, Kementrian Pekerjaan Umum dan Perumahan Rakyat

DOI:

https://doi.org/10.5614/jts.2023.30.3.5

Abstract

Abstrak

Jembatan kabel pancang (cable stayed) Pasupati Bandung didesain berdasarkan peraturan perencanaan jembatan BMS-1992 dan beroperasi sejak tahun 2005. Mengikuti perkembangan data lalu lintas, data kegempaan dan perkembangan ilmu pengetahuan, peraturan perencanaan jembatan telah diperbarui beberapa kali sampai yang terbaru adalah SNI 1725:2016 tentang Pembebanan untuk Jembatan serta SNI 2833:2016 tentang Perencanaan Tahan Gempa untuk Jembatan. Peraturan terbaru menerapkan sejumlah peningkatan beban hidup rencana dan juga beban gempa rencana sehingga memerlukan kapasitas rencana lebih tinggi. Demi menjamin keselamatan dan fungsi jembatan, perlu dilakukan evaluasi menyeluruh untuk memastikan bahwa Jembatan Pasupati masih layak berdasarkan peraturan perencanaan dan pembebanan terbaru. Pada penelitian ini dilakukan analisis metode elemen hingga linier dan nonlinier sesuai dengan gambar as built jembatan mengikuti kriteria perencanaan dan pembebanan pada peraturan terbaru. Hasil analisis pembebanan vertikal menunjukkan kelebihan beban tidak begitu besar, sehingga masih dianggap memenuhi syarat. Hasil analisis linier memperhitungkan beban gempa dan beban vertikal menunjukkan kapasitas momen pada dasar pylon dan sambungan pylon dengan gelagar terlampaui. Untuk konfirmasi hasil analisis linier dengan kombinasi beban gempa yang melebihi kapasitas, dilakukan analisisi non-linier pushover. Hasil analisis pushover menunjukkan struktur jembatan berada pada level kinerja fully operational sesuai dengan yang disyaratkan. Hasil analisis menunjukkan tidak ada kerusakan struktural dan non-struktural yang berarti apabila terjadi beban gempa rencana dan struktur jembatan dianggap layak dan memenuhi peraturan-peraturan perencanaan terbaru.

Abstract

The Pasupati Cable Stayed Bridge in Bandung was designed based on the BMS-1992 bridge design code and has been in operation since 2005. Following the developments of traffic data, seismic data, and advancements in scientific knowledge, the bridge design codes have been updated several times, with the latest being SNI 1725:2016 on Loadings for Bridges and SNI 2833:2016 on Earthquake Resistant Design for Bridges. The latest regulations incorporate increased design live loads and earthquake loads, thus requiring a higher design capacity. To ensure the safety and functionality of the bridge, a comprehensive evaluation is necessary to confirm that the Pasupati Bridge still meets the latest design criteria and loading regulations. In this study, a finite element analysis using both linear and nonlinear methods was conducted based on the as-built bridge drawings, following the criteria set by the latest design codes. The results of the vertical loading analysis showed that the overload caused by increased load criteria was not significant and the bridge considerred safe. The linear analysis for combination of seismic and vertical loads showed that the moment capacity at the base of the pylons and pylon-to-girder connections was exceeded, revealing the possibility of plastic response. To further investigate the bridge's performance under design earthquake loads and assess its behavior beyond elastic limits, a nonlinear pushover analysis was conducted. This analysis demonstrated that the bridge structure achieved a fully operational performance level, as required. Importantly, the results indicated no significant structural damage when subjected to the design earthquake loads, thus confirming the bridge's compliance with the latest design code.

Author Biographies

Made Suarjana, Civil and Environmental Engineering Faculty, Institut Teknologi Bandung, Lebak Siliwangi, Coblong, Bandung City, West Java, 40132,

Lektor Kepala

Teknik Sipil

Punto Budiharto, Direktorat Jendral Bina Marga, Kementrian Pekerjaan Umum dan Perumahan Rakyat

Fungsional Teknik Jalan dan Jembatan Ahli Muda BPJN Bengkulu

References

ATC-40 (1996), Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council-40, California Seismic Safety Commision.

Ashtari (2018), Evaluating the Performance-Based Seismic Design the Performance-Based Design of RC Bridges According to the 2014 Canadian Highway Bridge Design Code, Thesis Ph.D. University of British Columbia.

Atei, H., Mamaghani, M., and Lui, E.M. (2017), Proposed Framework for the Performance-Based Seismic Design of Highway Bridges, ASCE Structure Congress 2017 240-253.

Aviram, A., Mackie, K.R., and Stojadinovic, B. (2008), Guidelines for Nonlinear Analysis of Bridge Structures in California, Pacific Earthquake Engineering Research Center.

Balai Besar Pelaksanaan Jalan Nasional VI (2019), Laporan Hasil Pemeriksaan Jembatan Khusus. Survei Kondisi Jalan, Lereng, dan Jembatan di Lingkungan BBPJN VI (REN.01.2019), Direktorat Jendral Bina Marga, Kementrian Pekerjaan Umum dan Perumahan Rakyat, Jakarta, Indonesia.

BMS-1992, Bridge Management System, Bridge Design Manual, Departemen Pekerjaan Umum, Indonesia.

Budiharto, P. (2021), Evaluasi Kinerja Struktur Jembatan Beruji Kabel Pasupati Bandung, Tesis Program Magister, Institut Teknologi Bandung.

Camara, A. (2018), Seismic Behavior of Cable?Stayed Bridges: a Review. Medcrave Online Journal of Civil Engineering, 4(3), pp. 161-169. doi: 10.15406/mojce.2018.04.00115.

Chang, K. C., Lee, Z. K and CHEN, C. C. (2012), Structural Assessment of a Repaired Cable Bridge Damaged in 1999 Chi-Chi Earthquake, Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan

Fu, C., Wang, S. (2015), Computational Analysis and Design of Bridge Structures, CRC Press.

SE No. 08/SE/M/2015, Perencanaan Teknis Jembatan Kabel Pancang, Kementerian Pekerjaan Umum dan Perumahan Rakyat, Indonesia

Peta Sumber dan Bahaya Gempa Indonesia (2017), Pusat Gempa Nasional (2017), Puslitbang Kementerian Pekerjaan Umum dan Perumahan Rakyat, Indonesia.

SNI 03-2847-2002, Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung, Badan Standarisasi Nasional, Indonesia.

SNI 1725-2016, Pembebanan Untuk Jembatan, Badan Standarisasi Nasional, Indonesia.

SNI 2833-2016, Perencanaan Jembatan Terhadap Beban Gempa, Badan Standarisasi Nasional, Indonesia.

SNI 2847-2019, Persyaratan Beton Struktural untuk Bangunan Gedung, Badan Standarisasi Nasional, Indonesia

NCHRP Synthesis 440 (2013), Performance-Based Seismic Bridge Design, Transportation Research Board, National Cooperative Highway Research Program (NCHRP), Washington D.C.

Wang, X., Fang, J., Zhou, L., and Ye, A. (2019), Transverse Seismic Failure Mechanism and Ductility of Reinforced Concrete Pylon for Long Span Cable-Stayed Bridges: Model Test and Numerical Analysis, Elsevier Engineering Structures, Volume 189, 15 June 2019, Pages 206-221.

Witjaksono, A., Siahaan, L., Widjaja, B., Izaach, A.A. (2005) Perilaku Daya Dukung Tiang Bor pada Bagian Pylon Jembatan Layang Pasupati dengan Metode Transfer Beban. Seminar Nasional Geoteknik PILE, Bandung, Indonesia.

Wenzel, H., Egerer, R.V, Lin, T.K., and Lee, Z.K. (2012), International Investigation on The Earthquake Damaged Chi Lu Cable Stayed Bridge After Repair and Several Years of Operation. 3rd International Symposium on Life-Cycle Engineering (IALCCE 2012).

WIKA-WASKITA-CGC JO. (2005), As-built Drawings of Highway Drawings Pasteus-Cikapayang-Surapati Elevated Road & Bridge Project, Arsip Direktorat Bina Teknik.

Published

2023-12-21

How to Cite

Suarjana, M., & Budiharto, P. (2023). Evaluasi Kinerja Struktur Jembatan Kabel Pancang Pasupati Bandung . Jurnal Teknik Sipil, 30(3), 367-378. https://doi.org/10.5614/jts.2023.30.3.5