Pengukuran Langsung Kurva Karakteristik Air ? Tanah (SWCC) Pada Limbah Beton Dengan Metode Tempe Cell

Authors

  • Aldo Wirastana Adinegara Departemen Teknik Sipil dan Lingkungan, Fakultas Teknik, Universitas Indonesia
  • Rabbani Isya Ramadhan Departemen Teknik Sipil dan Lingkungan, Fakultas Teknik, Universitas Indonesia
  • Abdul Halim Hamdany Kelompok Keahlian Bidang Geoteknik, Departemen Teknik Sipil dan Lingkungan, Fakultas Teknik Universitas Indonesia
  • Fathiyah Hakim Sagitaningrum Kelompok Keahlian Bidang Geoteknik, Departemen Teknik Sipil dan Lingkungan, Fakultas Teknik Universitas Indonesia

DOI:

https://doi.org/10.5614/jts.2025.32.1.4

Keywords:

Concrete waste, permeability function, soil-water characteristic curve, tempe cell

Abstract

Abstrak

Terjadinya peningkatan volume limbah padat akibat pekerjaan konstruksi, sangat berdampak terhadap permasalahan ekologi serius. Dalam praktik rekayasa geoteknik, Capillary Barrier System dikenal sebagai suatu sistem konstruksi ramah lingkungan yang tersusun dari material limbah beton. Secara eksperimental, studi terhadap karakteristik material limbah beton pada kondisi takjenuh masih belum banyak dilakukan saat ini. Tujuan penelitian ini ialah untuk melakukan pengukuran secara langsung terhadap SWCC dan permeabilitas takjenuh pada material limbah beton dengan menggunakan alat Tempe Cell. Pengukuran SWCC berdasarkan alat Tempe Cell dilakukan secara bertahap, dengan mengaplikasikan tekanan udara sebesar 0.5, 1, 3, 5, 10, 20, dan 40 kPa. Adapun hasil data pengukuran, selanjutnya direpresentasikan dalam kurva best fit SWCC yang dianalisis dengan menggunakan fungsi regresi non-linier. Secara statistik, estimasi terhadap fungsi permeabilitas juga dilakukan berdasarkan hasil data pengujian permeabilitas jenuh dan representasi dalam kurva best fit SWCC. Berdasarkan hasil analisis, dapat diketahui bahwa karakteristik dari sifat hidraulik pada material limbah beton memiliki kemampuan penyimpanan air sebesar 31 %, serta pengaliran air dalam kondisi jenuh sebesar 1.12 x 10-5 m/s dan takjenuh sebesar 3.76 x 10-16 m/s.

Kata Kunci : Fungsi permeabilitas, kurva karakteristik tanah-air, limbah beton, tempe cell.

Abstract

The rise in solid waste from construction activities significantly impacts ecological issues. In geotechnical engineering practice, the Capillary Barrier System is an environmentally friendly construction system composed of concrete waste materials. Experimental studies on the characteristics of concrete waste materials under unsaturated conditions haven't been widely conducted at this time. The purpose of this study was to directly measure the SWCC and unsaturated permeability of concrete waste materials using the Tempe Cell. SWCC measurements based on the Tempe Cell were performed in stages, applying air pressures of 0.5, 1, 3, 5, 10, 20, and 40 kPa. The measurement data results were then presented in the SWCC best-fit curve, which was analyzed using a non-linear regression function. A statistical estimation of the permeability function was carried out using data from the saturated permeability tests and the SWCC best-fit curve. Based on the analysis results, it is evident that the characteristics of the hydraulic properties of concrete waste material have a water storage capacity of 31 % and water flow in saturated conditions of 1.12 x 10-5 m/s and unsaturated conditions of 3.76 x 10-16 m/s.

Keywords: Concrete waste, permeability function, soil-water characteristic curve, tempe cell.

References

Adinegara, A. W., Iqbal, M. and Ahmad, M. M., 2020. Pelaksanaan Pekerjaan Struktur Lantai 25 Area Tower A Proyek Transpark Bintaro Tangerang Selatan. In: Prosiding Seminar Nasional Teknik Sipil. pp.188?194.

Ahmad, O. A., 2020. The Usefulness of Construction and Destruction Waste as Recycled Aggregates in Concrete. International Journal of GEOMATE, 19(75), pp.8?18. https://doi.org/10.21660/2020.75.15242.

Arulrajah, A., Piratheepan, J. and Disfani, M. M., 2014. Reclaimed Asphalt Pavement and Recycled Concrete Aggregate Blends in Pavement Subbases: Laboratory and Field Evaluation. Journal of Materials in Civil Engineering, 26(2), pp.349?357.

ASTM, 2019. ASTM D2216?Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.

ASTM, 2019. ASTM D2434: Standard Test Method for Permeability of Granular Soils (Constant Head). ASTM International, [online] pp.3?5. Available at: <https://standards.iteh.ai/catalog/standards/cen/50899458-622b-4b86-b3e9-bfa0755bc727/en-14427-2022>.

ASTM, 2012. ASTM D698?Standard Test Methods for Laboratory Compaction Characteristics of Soil using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)).

ASTM, 2003. ASTM D6836?02: Test Methods for Determination of The Soil Water Characteristic Curve for Desorption using a Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, and/or Centrifuge. Annual book of ASTM standards, 4.

Batayneh, M., Marie, I. and Asi, I., 2007. Use of Selected Waste Materials in Concrete Mixes. Waste Management, 27(12), pp.1870?1876.

Das, B. M., 2004. Soil Mechanics. The Engineering Handbook, Second Edition, pp.81-1-81?7. https://doi.org/10.1007/bf01704074.

Dodge, M., 2003. Microsoft Office Excel 2003 Inside Out. Microsoft Press.

Fredlund, D. G., Rahardjo, H. and Fredlund, M. D., 2012. Unsaturated Soil Mechanics in Engineering Practice. Unsaturated Soil Mechanics in Engineering Practice. https://doi.org/10.1002/9781118280492.

Fredlund, D. G. and Xing, A., 1994. Equations for The Soil-Water Characteristic Curve. Canadian Geotechnical Journal, 31(4), pp.521?532.

Hadavand, B. and Imaninasab, R., 2019. Assessing The Influence of Construction and Demolition Waste Materials on Workability and Mechanical Properties of Concrete using Statistical Analysis. Innovative Infrastructure Solutions, 4, pp.1?11.

Rahardjo, H., Gofar, N. and Satyanaga, A., 2018. Effect of Concrete Waste Particles on Infiltration Characteristics of Soil. Environmental Earth Sciences, 77, pp.1?12.

Reginato, R. J. and Van Bavel, C. H. M., 1962. Pressure Cell for Soil Cores. Soil Science Society of America Journal, 26(1), pp.1?3.

Satyanaga, A., Rahardjo, H. and Hua, C. J., 2019. Numerical Simulation of Capillary Barrier System under Rainfall Infiltration in Singapore. ISSMGE International Journal of Geoengineering Case Histories, 5(1), pp.43?54.

Satyanaga, A., Rahardjo, H. and Zhai, Q., 2017. Estimation of Unimodal Water Characteristic Curve for Gap-Graded Soil. Soils and Foundations, 57(5), pp.789?801.

Satyanaga, A., Zhai, Q., Rahardjo, H., de FN Gitirana Jr, G., Moon, S. W. and Kim, J., 2021. Performance of Capillary Barrier as a Sustainable Slope Protection. In: MATEC Web of Conferences. EDP Sciences. pp.3021.

Zhai, Q., Rahardjo, H. and Satyanaga, A., 2018. A Pore-Size Distribution Function Based Method for Estimation of Hydraulic Properties of Sandy Soils. Engineering Geology, 246, pp.288?292.

Zhai, Q., Rahardjo, H. and Satyanaga, A., 2019. Estimation of Air Permeability Function from Soil-Water Characteristic Curve. Canadian Geotechnical Journal, 56(4), pp.505?513.

Published

2025-07-27

How to Cite

Adinegara, A. W., Ramadhan, R. I., Hamdany, A. H., & Sagitaningrum, F. H. (2025). Pengukuran Langsung Kurva Karakteristik Air – Tanah (SWCC) Pada Limbah Beton Dengan Metode Tempe Cell. Jurnal Teknik Sipil, 32(1), 29-34. https://doi.org/10.5614/jts.2025.32.1.4