Pemodelan Sebaran dan Waktu Tinggal Limbah Panas di Teluk Bontang

Authors

  • Totok Suprijo Oceanography Reasearch Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung
  • Francis Seravino Romawan Oceanography Reasearch Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung
  • Ashadi Arifin Nur Korea-Indonesia MTCRC (Marine Technology Cooperation Research Center, Cirebon
  • Idris Mandang Departemen Geofisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman
  • Gandhi Napitupulu Oceanography Reasearch Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung

DOI:

https://doi.org/10.5614/jts.2024.31.3.9

Keywords:

Thermal dispersion, exchange process, residence time, flushing time

Abstract

Abstract

The water mass exchange process between a bay and an open sea can flush effluents or pollutants that enter the bay. This paper describes a two-dimensional numerical modelling study on thermal water dispersion due to hydrodynamic processes in The Bontang Bay and the bay flushing capability. The numerical model used is Delft3D. Model input data was including bathymetry, water elevation, discharge of seawater intake and outfall, wind speed, and temperature of the thermal water effluent discharged into Bontang Bay. The modelling results were verified with observation data. Verification results shows that error of water elevation is 0.07 m, while current speed error is 0.26 m/s. Dispersion modeling results indicate that 40C thermal water discharged at a rate of 24.6 m/s into Bontang Bay has increased the water temperature in the bay by 1C to 2C. This increase in temperature potentially has a negative impact on aquatic ecosystems. An increase in water temperature of 1C and 2C covers areas of 19.32 km and 7.26 km in the bay, respectively. The residence time of thermal water in Bontang Bay is 3 days and 12 hours before flushing.

Keywords: Thermal dispersion, exchange process, residence time, flushing time

References

Audzijonyte, A., Richards, S.A., Stuart-Smith, R.D., Pecl, G., Edgar, G.J., Barrett, N.S., Payne, N., Blanchard, J.L., 2020, Fish body sizes change with temperature but not all species shrink with warming, Nature Ecology & Evolution, Vol. 4, No. 6, 809?814. https://doi.org/10.1038/s41559-020-1171-0

Brough, D., Jouhara, H., 2020, The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery, International Journal of Thermofluids 1?2, 100007. https://doi.org/10.1016/J.IJFT.2019.100007

Cardenas, S., Mquez, A., Guevara, E., 2023, Diffusion?advection process modeling of organochlorine pesticides in rivers, Journal of Applied Water Engineering and Research, Vol. 11, 1?22. https://doi.org/10.1080/23249676.2021.1982029

Chandra, Y.P., Matuska, T., 2019, Stratification analysis of domestic hot water storage tanks: A comprehensive review, Energy Build, Vol. 187, 110?131. https://doi.org/10.1016/J.ENBUILD.2019.01.052

Deltares, 2024, 3D/2D Modelling suite for integral water solutions User Manual, The Netherlands.

Fordyce, A.J., Camp, E.F., Ainsworth, T.D., 2017, Polyp bailout in Pocillopora damicornis following thermal stress, F1000Res 6. https://doi.org/10.12688/F1000RESEARCH.11522.2

Han, T., Qi, Z., Shi, R., Liu, Q., Dai, M., Huang, H., 2022, Effects of Seawater Temperature and Salinity on Physiological Performances of Swimming Shelled Pteropod Creseis acicula During a Bloom Period, Front Mar Sci 9, 806848. https://doi.org/10.3389/FMARS.2022.806848/BIBTEX

Hughes, D.J., Alderdice, R., Cooney, C., Kl, M., Pernice, M., Voolstra, C.R., Suggett, D.J., 2020, Coral reef survival under accelerating ocean deoxygenation, Nature Climate Change, Vol. 10, No. 4, 296?307. https://doi.org/10.1038/s41558-020-0737-9

Hutagalung, H.P., 1988, Pengaruh suhu air terhadap kehidupan organisme laut, Jurnal Oseana, Vol. 13, 153?164.

Jay, O., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats, R.S., Ma, W., Malik, A., Morris, N.B., Nybo, L., Seneviratne, S.I., Vanos, J., Ebi, K.L., 2021, Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities, The Lancet, Vol. 398, 709?724. https://doi.org/10.1016/S0140-6736(21)01209-5

Kasman Kasman, I Wayan Nurjaya, Ario Damar, Ismudi Muchsin, Zaenal Arifin, 2012, Prediksi Sebaran Suhu dari Air Buangan Sistem Air Pendingin PT. Badak NGL di Perairan Bontang Menggunakan Model Numerik, Ilmu Kelautan, Vol. 15, 194?201. https://doi.org/10.14710/IK.IJMS.15.4.194-201

Latuconsina, H., 2010, Dampak pemanasan global terhadap ekosistem pesisir dan lautan, Agrikan: Jurnal Agribisnis Perikanan, Vol. 3, 30?37. https://doi.org/10.29239/J.AGRIKAN.3.1.30-37

Le Mehaute, B., 1976, Similitude in coastal engineering, ASCE J Waterw Harbors Coastal Eng Div, Vol. 102, 317?335. https://doi.org/10.1061/AWHCAR.0000332

Li, S., Zheng, J., Gao, L., Zhao, Z., 2022, Application of deghosting method based on Green?s theorem in reservoir description of Bohai Bay, SEG Technical Program, 2932?2936. https://doi.org/10.1190/IMAGE2022-3751647.1

Liu, W., Hou, Q., Lian, J., Zhang, A., Dang, J., 2020, Coastal pollutant transport modeling using smoothed particle hydrodynamics with diffusive flux, Adv Water Resour, Vol. 146, 103764. https://doi.org/10.1016/J.ADVWATRES.2020.103764

Manasrah, A.M., Aldomi, A., Gupta, B.B., 2019, An optimized service broker routing policy based on differential evolution algorithm in fog/cloud environment. Cluster Comput, Vol. 22, 1639?1653. https://doi.org/10.1007/S10586-017-1559-Z/TABLES/21

Martin, J.L., McCutcheon, S.C., Schottman, R.W., 2018, Hydrodynamics and Transport for Water Quality Modeling, Hydrodynamics and Transport for Water Quality Modeling. https://doi.org/10.1201/9780203751510

Mazyan, W., Ahmadi, A., Ahmed, H., Hoorfar, M., 2016, Market and technology assessment of natural gas processing: A review, J Nat Gas Sci Eng, Vol. 30, 487?514. https://doi.org/10.1016/J.JNGSE.2016.02.010

Miller, K.A., Thompson, K.F., Johnston, P., Santillo, D., 2018, An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps, Front Mar Sci, Vol. 4, 312755. https://doi.org/10.3389/FMARS.2017.00418/BIBTEX

Nagpal, H., Spriet, J., Murali, M.K., McNabola, A., 2021, Heat Recovery from Wastewater?A Review of Available Resource, Water , Vol. 13, 1274. https://doi.org/10.3390/W13091274

Nur, A.A., Suprijo, T., Mandang, I., Radjawane, I.M., Park, H., Khadami, F., 2021, Ocean Modeling in the Makassar Strait and Balikpapan Bay Using Online Nesting Method, J Coast Res, Vol. 114, 206?210. https://doi.org/10.2112/JCR-SI114-042.1

Plawsky, J.L., 2020, Transport phenomena fundamentals, CRC press.

Ramachandran, R.P., Akbarzadeh, M., Paliwal, J., Cenkowski, S., 2017, Computational Fluid Dynamics in Drying Process Modelling?a Technical Review, Food and Bioprocess Technology, Vol. 11, No. 2, 271?292. https://doi.org/10.1007/S11947-017-2040-Y

Van Rijn, J., 2013, Waste treatment in recirculating aquaculture systems. Aquac Eng, Vol. 53, 49?56. https://doi.org/10.1016/J.AQUAENG.2012.11.010

Weinnig, A.M., Gez, C.E., Hallaj, A., Cordes, E.E., 2020, Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure. Scientific Reports, Vol. 10. No.1, 10, 1?13. https://doi.org/10.1038/s41598-020-58556-9

Yao, C.L., Somero, G.N., 2014, The impact of ocean warming on marine organisms. Chinese Science Bulletin, Vol. 59, 468?479. https://doi.org/10.1007/S11434-014-0113-0/METRICS

Zhou, J., Bao, W., Tick, G.R., Moftakhari, H., Li, Y., Cheng, L., 2021, A modified chezy formula for one-dimensional unsteady frictional resistance in open channel flow, Journal of Fluids Engineering, Vol. 143, No. 5, 051303

Published

2024-12-30

How to Cite

Suprijo, T., Romawan, F. S., Nur, A. A., Mandang, I., & Napitupulu, G. (2024). Pemodelan Sebaran dan Waktu Tinggal Limbah Panas di Teluk Bontang. Jurnal Teknik Sipil, 31(3), 313-326. https://doi.org/10.5614/jts.2024.31.3.9